FFT-based homogenisation accelerated by low-rank tensor approximations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00342321" target="_blank" >RIV/68407700:21110/20:00342321 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cma.2020.112890" target="_blank" >https://doi.org/10.1016/j.cma.2020.112890</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2020.112890" target="_blank" >10.1016/j.cma.2020.112890</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FFT-based homogenisation accelerated by low-rank tensor approximations
Popis výsledku v původním jazyce
Fast Fourier transform (FFT) based methods have turned out to be an effective computational approach for numerical homogenisation. In particular, Fourier–Galerkin methods are computational methods for partial differential equations that are discretised with trigonometric polynomials. Their computational effectiveness benefits from efficient FFT based algorithms as well as a favourable condition number. Here these kinds of methods are accelerated by low-rank tensor approximation techniques for a solution field using canonical polyadic, Tucker, and tensor train formats. This reduced order model also allows to efficiently compute suboptimal global basis functions without solving the full problem. It significantly reduces computational and memory requirements for problems with a material coefficient field that admits a moderate rank approximation. The advantages of this approach against those using full material tensors are demonstrated using numerical examples for the model homogenisation problem that consists of a scalar linear elliptic variational problem defined in two and three dimensional settings with continuous and discontinuous heterogeneous material coefficients. This approach opens up the potential of an efficient reduced order modelling of large scale engineering problems with heterogeneous material.
Název v anglickém jazyce
FFT-based homogenisation accelerated by low-rank tensor approximations
Popis výsledku anglicky
Fast Fourier transform (FFT) based methods have turned out to be an effective computational approach for numerical homogenisation. In particular, Fourier–Galerkin methods are computational methods for partial differential equations that are discretised with trigonometric polynomials. Their computational effectiveness benefits from efficient FFT based algorithms as well as a favourable condition number. Here these kinds of methods are accelerated by low-rank tensor approximation techniques for a solution field using canonical polyadic, Tucker, and tensor train formats. This reduced order model also allows to efficiently compute suboptimal global basis functions without solving the full problem. It significantly reduces computational and memory requirements for problems with a material coefficient field that admits a moderate rank approximation. The advantages of this approach against those using full material tensors are demonstrated using numerical examples for the model homogenisation problem that consists of a scalar linear elliptic variational problem defined in two and three dimensional settings with continuous and discontinuous heterogeneous material coefficients. This approach opens up the potential of an efficient reduced order modelling of large scale engineering problems with heterogeneous material.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
1879-2138
Svazek periodika
2020
Číslo periodika v rámci svazku
364
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000527574600024
EID výsledku v databázi Scopus
2-s2.0-85080072203