Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Acceleration of FFT-based homogenisation by low-rank tensors approximation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00334198" target="_blank" >RIV/68407700:21110/19:00334198 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Acceleration of FFT-based homogenisation by low-rank tensors approximation

  • Popis výsledku v původním jazyce

    The main task of the homogenization is to homogeneously de- scribe material properties of periodically heterogeneous materials, based on knowledge of microstructure geometry and properties of its phases. Evalu- ation of the homogenised properties with high accuracy requires a detailed knowledge of materials’ microstructure. Unfortunately, this knowledge comes hand in hand with high memory and time requirements of approximate so- lution to homogenisation problem. To find a solution we use method based on the Fast Fourier Transform (FFT), which has been introduced in 1994 by Moulinec and Suquet [1] and lately explained as Fourier-Galerkin method by Vondˇrejc, Zeman and Marek in [2]. FFT based methods has turned out to be an effective computa- tional approach for numerical homogenisation of periodic media. Its com- putational effectiveness benefits from efficient FFT based algorithms as well as a favourable condition number. We accelerated this method by low-rank tensor approximation techniques for a solution field. The idea of low-rank tensors, or low-rank approxima- tions is to express large multidimensional tensors by fewer parameters. This compression can lead to a huge reduction of the mentioned computational requirements. Hackbusch explained whole concept on variety of low-rank tensor formats in [3]. We have tested canonical, Tucker and tensor train formats. The last one was introduced by Oseledets and Tyrtyshnikov in [4]. The advantages of this approach against those using full tensors will be demonstrated using numerical examples for the model homogenisation prob- lem that consists of a scalar linear elliptic variational problem defined in two and three dimensional setting with continuous and discontinuous heteroge- neous material coefficients. This approach has the potential for an efficient reduced order modelling of large scale engineering problems with heteroge- neous material.

  • Název v anglickém jazyce

    Acceleration of FFT-based homogenisation by low-rank tensors approximation

  • Popis výsledku anglicky

    The main task of the homogenization is to homogeneously de- scribe material properties of periodically heterogeneous materials, based on knowledge of microstructure geometry and properties of its phases. Evalu- ation of the homogenised properties with high accuracy requires a detailed knowledge of materials’ microstructure. Unfortunately, this knowledge comes hand in hand with high memory and time requirements of approximate so- lution to homogenisation problem. To find a solution we use method based on the Fast Fourier Transform (FFT), which has been introduced in 1994 by Moulinec and Suquet [1] and lately explained as Fourier-Galerkin method by Vondˇrejc, Zeman and Marek in [2]. FFT based methods has turned out to be an effective computa- tional approach for numerical homogenisation of periodic media. Its com- putational effectiveness benefits from efficient FFT based algorithms as well as a favourable condition number. We accelerated this method by low-rank tensor approximation techniques for a solution field. The idea of low-rank tensors, or low-rank approxima- tions is to express large multidimensional tensors by fewer parameters. This compression can lead to a huge reduction of the mentioned computational requirements. Hackbusch explained whole concept on variety of low-rank tensor formats in [3]. We have tested canonical, Tucker and tensor train formats. The last one was introduced by Oseledets and Tyrtyshnikov in [4]. The advantages of this approach against those using full tensors will be demonstrated using numerical examples for the model homogenisation prob- lem that consists of a scalar linear elliptic variational problem defined in two and three dimensional setting with continuous and discontinuous heteroge- neous material coefficients. This approach has the potential for an efficient reduced order modelling of large scale engineering problems with heteroge- neous material.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC17-04150J" target="_blank" >GC17-04150J: Robustní dvojúrovňové simulace založené na Fourierově metodě a metodě konečných prvků: Odhady chyb, redukované modely a stochastika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů