Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Research Progress and Prospect of Molecular Dynamics of Asphalt Systems(Review)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00357511" target="_blank" >RIV/68407700:21110/20:00357511 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.11896/cldb.19070106" target="_blank" >https://doi.org/10.11896/cldb.19070106</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.11896/cldb.19070106" target="_blank" >10.11896/cldb.19070106</a>

Alternativní jazyky

  • Jazyk výsledku

    čínština

  • Název v původním jazyce

    沥青体系的分子动力学研究进展及展望

  • Popis výsledku v původním jazyce

    With the rapid development of China road engineering, asphalt concrete has been widely used in road engineering. In recent years, the research on asphalt materials is not limited to macroscopic performance experiments, but also extended to mesoscopic and microscopic scale to develop multiscale research. The molecular dynamics is a kind of microscopic research methods which is carry out the integral algorithm under different conditions to track molecular trajectories of research objects. Molecular dynamics was widely used in bitumen material design and microscopic mechanism research in molecular scale. The advantage is deeply explained the phenomenon and properties of asphalt system from the aspect of molecular motion. Therefore, many scholars study bitumen system by combining macroscopic test and molecular dynamics simulation, which will promote the development of asphalt materials. In this paper, molecular dynamics of bitumen system was comprehensively analyzed, general equilibrium steps of bitumen molecular dynamics model were constructed. The effectiveness of bitumen molecular dynamics model was verified by density, glass transition temperature, viscosity and solubility parameters. The nano-aggregation, self-repair, modification, aging, interfacial adhesion mechanisms of bitumen researchs based on molecular dynamics were comprehensively analyzed. The results show that the molecular dynamics method of bitumen materials was in early exploration stage, but the development potential is significant. Research on the dynamic behavior of bitumen components molecules by molecular dynamics method can reveal time-dependent molecular motion law that the normal test cannot be observed, predict bitumen macroscopic properties, target on bitumen molecular structures to put forward the improve measurement of bitumen road performance, promote the development of asphalt pavement multi-scale experimental simulation and lay the foundation for asphalt materials genome research.

  • Název v anglickém jazyce

    Research Progress and Prospect of Molecular Dynamics of Asphalt Systems(Review)

  • Popis výsledku anglicky

    With the rapid development of China road engineering, asphalt concrete has been widely used in road engineering. In recent years, the research on asphalt materials is not limited to macroscopic performance experiments, but also extended to mesoscopic and microscopic scale to develop multiscale research. The molecular dynamics is a kind of microscopic research methods which is carry out the integral algorithm under different conditions to track molecular trajectories of research objects. Molecular dynamics was widely used in bitumen material design and microscopic mechanism research in molecular scale. The advantage is deeply explained the phenomenon and properties of asphalt system from the aspect of molecular motion. Therefore, many scholars study bitumen system by combining macroscopic test and molecular dynamics simulation, which will promote the development of asphalt materials. In this paper, molecular dynamics of bitumen system was comprehensively analyzed, general equilibrium steps of bitumen molecular dynamics model were constructed. The effectiveness of bitumen molecular dynamics model was verified by density, glass transition temperature, viscosity and solubility parameters. The nano-aggregation, self-repair, modification, aging, interfacial adhesion mechanisms of bitumen researchs based on molecular dynamics were comprehensively analyzed. The results show that the molecular dynamics method of bitumen materials was in early exploration stage, but the development potential is significant. Research on the dynamic behavior of bitumen components molecules by molecular dynamics method can reveal time-dependent molecular motion law that the normal test cannot be observed, predict bitumen macroscopic properties, target on bitumen molecular structures to put forward the improve measurement of bitumen road performance, promote the development of asphalt pavement multi-scale experimental simulation and lay the foundation for asphalt materials genome research.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8JCH1002" target="_blank" >8JCH1002: Sdružené rejuvenační účinky u zestárnutého asfaltového pojiva z asfaltového recyklátu s využitím aditiv z bio-odpadů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Cailiao daobao/Materials Reports

  • ISSN

    1005-023X

  • e-ISSN

    1005-023X

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    CN - Čínská lidová republika

  • Počet stran výsledku

    11

  • Strana od-do

    19083-19093

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85096713321