A Coarse-Grained Molecular Model for Simulating Self-Healing of Bitumen
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00360462" target="_blank" >RIV/68407700:21110/22:00360462 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/app122010360" target="_blank" >https://doi.org/10.3390/app122010360</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app122010360" target="_blank" >10.3390/app122010360</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Coarse-Grained Molecular Model for Simulating Self-Healing of Bitumen
Popis výsledku v původním jazyce
The longevity of asphalt pavements is a key focus of road engineering, which closely relates to the self-healing ability of bitumen. Our work aims to establish a CGMD model and matched force field for bitumen and break through the limitations of the research scale to further explore the microscopic mechanism of bitumen self-healing. In this study, a CGMD mapping scheme containing 16 kinds of beads is proposed, and the non-bond potential energy function and bond potential energy function are calculated based on all-atom simulation to construct and validate a coarse-grained model for bitumen. On this basis, a micro-crack model with a width of 36.6nm is simulated, and the variation laws of potential energy, density, diffusion coefficient, relative concentration and temperature in the process of bitumen self-healing are analyzed with the cracking rate parameter proposed to characterize the degree of bitumen crack healing. The results show that the computational size of the coarse-grained simulation is much larger than that of the all-atom, which can explain the self-healing mechanism at the molecular level. In the self-healing process, non-bonded interactions dominate the molecular movement, and differences in the decreased rate of diffusion among the components indicate that saturates and aromatics play a major role in self-healing. Meanwhile, the variations in crack rates reveal that healing time is inversely proportional to temperature. The impact of increasing temperature on reducing healing time is most obvious when the temperature approaches the glass transition temperature (300 K).
Název v anglickém jazyce
A Coarse-Grained Molecular Model for Simulating Self-Healing of Bitumen
Popis výsledku anglicky
The longevity of asphalt pavements is a key focus of road engineering, which closely relates to the self-healing ability of bitumen. Our work aims to establish a CGMD model and matched force field for bitumen and break through the limitations of the research scale to further explore the microscopic mechanism of bitumen self-healing. In this study, a CGMD mapping scheme containing 16 kinds of beads is proposed, and the non-bond potential energy function and bond potential energy function are calculated based on all-atom simulation to construct and validate a coarse-grained model for bitumen. On this basis, a micro-crack model with a width of 36.6nm is simulated, and the variation laws of potential energy, density, diffusion coefficient, relative concentration and temperature in the process of bitumen self-healing are analyzed with the cracking rate parameter proposed to characterize the degree of bitumen crack healing. The results show that the computational size of the coarse-grained simulation is much larger than that of the all-atom, which can explain the self-healing mechanism at the molecular level. In the self-healing process, non-bonded interactions dominate the molecular movement, and differences in the decreased rate of diffusion among the components indicate that saturates and aromatics play a major role in self-healing. Meanwhile, the variations in crack rates reveal that healing time is inversely proportional to temperature. The impact of increasing temperature on reducing healing time is most obvious when the temperature approaches the glass transition temperature (300 K).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000874478000001
EID výsledku v databázi Scopus
2-s2.0-85140461250