METHODS FOR APPROXIMATING DISTRIBUTION OF UNKNOWN PARAMETER ESTIMATES WITH APPLICATION IN MATERIAL THERMOPHYSICS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00351635" target="_blank" >RIV/68407700:21110/21:00351635 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021033482" target="_blank" >https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021033482</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2021033482" target="_blank" >10.1615/Int.J.UncertaintyQuantification.2021033482</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
METHODS FOR APPROXIMATING DISTRIBUTION OF UNKNOWN PARAMETER ESTIMATES WITH APPLICATION IN MATERIAL THERMOPHYSICS
Popis výsledku v původním jazyce
This paper discusses and compares three methods for approximating a joint probability distribution of least-squares estimates of parameters of interest in nonlinear regression. A joint distribution provides complete information about a random fluctuation of the estimates around their true values and can be used for computing arbitrary criterion values in order to assess accuracy of estimates in experimental design problems. Besides an approximate normal distribution and an approximate distribution obtained by numerical optimization of the utility function for the repeatedly simulated model, an approximate probability density derived by a differential geometry is recommended. To demonstrate the computational feasibility of the proposed methods, all three approaches are applied to several simplified versions of a numerical experiment to identify thermophysical parameters using a model with additional random parameters. The examples presented here illustrate how the suggested methods differ, including in terms of computational complexity.
Název v anglickém jazyce
METHODS FOR APPROXIMATING DISTRIBUTION OF UNKNOWN PARAMETER ESTIMATES WITH APPLICATION IN MATERIAL THERMOPHYSICS
Popis výsledku anglicky
This paper discusses and compares three methods for approximating a joint probability distribution of least-squares estimates of parameters of interest in nonlinear regression. A joint distribution provides complete information about a random fluctuation of the estimates around their true values and can be used for computing arbitrary criterion values in order to assess accuracy of estimates in experimental design problems. Besides an approximate normal distribution and an approximate distribution obtained by numerical optimization of the utility function for the repeatedly simulated model, an approximate probability density derived by a differential geometry is recommended. To demonstrate the computational feasibility of the proposed methods, all three approaches are applied to several simplified versions of a numerical experiment to identify thermophysical parameters using a model with additional random parameters. The examples presented here illustrate how the suggested methods differ, including in terms of computational complexity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Uncertainty Quantification
ISSN
2152-5080
e-ISSN
2152-5099
Svazek periodika
11
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
31-47
Kód UT WoS článku
000729611800002
EID výsledku v databázi Scopus
2-s2.0-85120707360