Efficient finite difference formulation of a geometrically nonlinear beam element
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00352518" target="_blank" >RIV/68407700:21110/21:00352518 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/nme.6820" target="_blank" >https://doi.org/10.1002/nme.6820</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.6820" target="_blank" >10.1002/nme.6820</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient finite difference formulation of a geometrically nonlinear beam element
Popis výsledku v původním jazyce
The article is focused on a two-dimensional geometrically nonlinear formulation of a Bernoulli beam element that can accommodate arbitrarily large rotations of cross sections. The formulation is based on the integrated form of equilibrium equations, which are combined with the kinematic equations and generalized material equations, leading to a set of three first-order differential equations. These equations are then discretized by finite differences and the boundary value problem is converted into an initial value problem using a technique inspired by the shooting method. Accuracy of the numerical approximation is conveniently increased by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant, which leads to high computational efficiency. The element has been implemented into an open-source finite element code. Numerical examples show a favorable comparison with standard beam elements formulated in the finite-strain framework and with analytical solutions
Název v anglickém jazyce
Efficient finite difference formulation of a geometrically nonlinear beam element
Popis výsledku anglicky
The article is focused on a two-dimensional geometrically nonlinear formulation of a Bernoulli beam element that can accommodate arbitrarily large rotations of cross sections. The formulation is based on the integrated form of equilibrium equations, which are combined with the kinematic equations and generalized material equations, leading to a set of three first-order differential equations. These equations are then discretized by finite differences and the boundary value problem is converted into an initial value problem using a technique inspired by the shooting method. Accuracy of the numerical approximation is conveniently increased by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant, which leads to high computational efficiency. The element has been implemented into an open-source finite element code. Numerical examples show a favorable comparison with standard beam elements formulated in the finite-strain framework and with analytical solutions
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
122
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
41
Strana od-do
7013-7053
Kód UT WoS článku
000695124300001
EID výsledku v databázi Scopus
2-s2.0-85114735478