Efficient formulation of a two-noded geometrically exact curved beam element
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00360424" target="_blank" >RIV/68407700:21110/23:00360424 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/nme.7133" target="_blank" >https://doi.org/10.1002/nme.7133</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.7133" target="_blank" >10.1002/nme.7133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient formulation of a two-noded geometrically exact curved beam element
Popis výsledku v původním jazyce
The article extends the formulation of a 2D geometrically exact beam element proposed by Jirásek et al. (2021) to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The article develops the theoretical framework based on the Navier–Bernoulli hypothesis, with a possible extension to shear-flexible beams. Numerical procedures for the evaluation of equivalent nodal forces and of the element tangent stiffness are presented in detail. Unlike standard finite element formulations, the present approach can increase accuracy by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant. The efficiency and accuracy of the developed scheme are documented by seven examples that cover circular and parabolic arches, a spiral-shaped beam, and a spring-like beam with a zig-zag centerline. The proposed formulation does not exhibit any locking. No excessive stiffness is observed for coarse computational grids and the distribution of internal forces is not polluted by any oscillations. It is also shown that a cross effect in the relations between internal forces and deformation variables arises, that is, the bending moment affects axial stretching and the normal force affects the curvature. This coupling is theoretically explained in the Appendix.
Název v anglickém jazyce
Efficient formulation of a two-noded geometrically exact curved beam element
Popis výsledku anglicky
The article extends the formulation of a 2D geometrically exact beam element proposed by Jirásek et al. (2021) to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The article develops the theoretical framework based on the Navier–Bernoulli hypothesis, with a possible extension to shear-flexible beams. Numerical procedures for the evaluation of equivalent nodal forces and of the element tangent stiffness are presented in detail. Unlike standard finite element formulations, the present approach can increase accuracy by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant. The efficiency and accuracy of the developed scheme are documented by seven examples that cover circular and parabolic arches, a spiral-shaped beam, and a spring-like beam with a zig-zag centerline. The proposed formulation does not exhibit any locking. No excessive stiffness is observed for coarse computational grids and the distribution of internal forces is not polluted by any oscillations. It is also shown that a cross effect in the relations between internal forces and deformation variables arises, that is, the bending moment affects axial stretching and the normal force affects the curvature. This coupling is theoretically explained in the Appendix.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
124
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
50
Strana od-do
570-619
Kód UT WoS článku
000865848200001
EID výsledku v databázi Scopus
2-s2.0-85139548797