Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient formulation of a two-noded geometrically exact curved beam element

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00360424" target="_blank" >RIV/68407700:21110/23:00360424 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/nme.7133" target="_blank" >https://doi.org/10.1002/nme.7133</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nme.7133" target="_blank" >10.1002/nme.7133</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient formulation of a two-noded geometrically exact curved beam element

  • Popis výsledku v původním jazyce

    The article extends the formulation of a 2D geometrically exact beam element proposed by Jirásek et al. (2021) to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The article develops the theoretical framework based on the Navier–Bernoulli hypothesis, with a possible extension to shear-flexible beams. Numerical procedures for the evaluation of equivalent nodal forces and of the element tangent stiffness are presented in detail. Unlike standard finite element formulations, the present approach can increase accuracy by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant. The efficiency and accuracy of the developed scheme are documented by seven examples that cover circular and parabolic arches, a spiral-shaped beam, and a spring-like beam with a zig-zag centerline. The proposed formulation does not exhibit any locking. No excessive stiffness is observed for coarse computational grids and the distribution of internal forces is not polluted by any oscillations. It is also shown that a cross effect in the relations between internal forces and deformation variables arises, that is, the bending moment affects axial stretching and the normal force affects the curvature. This coupling is theoretically explained in the Appendix.

  • Název v anglickém jazyce

    Efficient formulation of a two-noded geometrically exact curved beam element

  • Popis výsledku anglicky

    The article extends the formulation of a 2D geometrically exact beam element proposed by Jirásek et al. (2021) to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The article develops the theoretical framework based on the Navier–Bernoulli hypothesis, with a possible extension to shear-flexible beams. Numerical procedures for the evaluation of equivalent nodal forces and of the element tangent stiffness are presented in detail. Unlike standard finite element formulations, the present approach can increase accuracy by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant. The efficiency and accuracy of the developed scheme are documented by seven examples that cover circular and parabolic arches, a spiral-shaped beam, and a spring-like beam with a zig-zag centerline. The proposed formulation does not exhibit any locking. No excessive stiffness is observed for coarse computational grids and the distribution of internal forces is not polluted by any oscillations. It is also shown that a cross effect in the relations between internal forces and deformation variables arises, that is, the bending moment affects axial stretching and the normal force affects the curvature. This coupling is theoretically explained in the Appendix.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal for Numerical Methods in Engineering

  • ISSN

    0029-5981

  • e-ISSN

    1097-0207

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    50

  • Strana od-do

    570-619

  • Kód UT WoS článku

    000865848200001

  • EID výsledku v databázi Scopus

    2-s2.0-85139548797