Efficient inverse solvers for thermal tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00355070" target="_blank" >RIV/68407700:21110/21:00355070 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.camwa.2021.06.005" target="_blank" >https://doi.org/10.1016/j.camwa.2021.06.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2021.06.005" target="_blank" >10.1016/j.camwa.2021.06.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient inverse solvers for thermal tomography
Popis výsledku v původním jazyce
Thermal tomography is a method for recovering heterogeneous thermal properties employing only boundary measurements. This paper focuses on the development of efficient inverse solvers for scenarios where the evolution of boundary conditions can vary in time. A transient heat model with two material parameters – volumetric capacity and a coefficient of thermal conductivity – is introduced for the description of the underlying physical phenomena. All proposed identification algorithms are deterministic methods based on a regularised Gauss-Newton method. A basic framework, implementation details, and the modification of general constraints initially derived for a standard setup of the Calderón problem are discussed here. Moreover, the algorithms are numerically verified for numerous examples, and results obtained show that the inverse problem exhibits a certain degree of ambiguity for a particular measurement-loading scenario. In other words, the important material property minimising the magnitude of error of the objective function seems to be the effusivity field rather than accurate identification of the individual thermal fields.
Název v anglickém jazyce
Efficient inverse solvers for thermal tomography
Popis výsledku anglicky
Thermal tomography is a method for recovering heterogeneous thermal properties employing only boundary measurements. This paper focuses on the development of efficient inverse solvers for scenarios where the evolution of boundary conditions can vary in time. A transient heat model with two material parameters – volumetric capacity and a coefficient of thermal conductivity – is introduced for the description of the underlying physical phenomena. All proposed identification algorithms are deterministic methods based on a regularised Gauss-Newton method. A basic framework, implementation details, and the modification of general constraints initially derived for a standard setup of the Calderón problem are discussed here. Moreover, the algorithms are numerically verified for numerous examples, and results obtained show that the inverse problem exhibits a certain degree of ambiguity for a particular measurement-loading scenario. In other words, the important material property minimising the magnitude of error of the objective function seems to be the effusivity field rather than accurate identification of the individual thermal fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Mathematics with Applications
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
97
Číslo periodika v rámci svazku
09
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
314-328
Kód UT WoS článku
000688441500005
EID výsledku v databázi Scopus
2-s2.0-85108420546