Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-Stabilizing Self-Assembly

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F22%3A00360848" target="_blank" >RIV/68407700:21110/22:00360848 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/22:00360848

  • Výsledek na webu

    <a href="https://doi.org/10.1109/LRA.2022.3191795" target="_blank" >https://doi.org/10.1109/LRA.2022.3191795</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/LRA.2022.3191795" target="_blank" >10.1109/LRA.2022.3191795</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-Stabilizing Self-Assembly

  • Popis výsledku v původním jazyce

    The emerging field of passive macro-scale tile-based self-assembly (TBSA) shows promise in enabling effective manufacturing processes by harnessing TBSA's intrinsic parallelism. However, current TBSA methodologies still do not fulfill their potentials, largely because such assemblies are often prone to errors, and the size of an individual assembly is limited due to insufficient mechanical stability. Moreover, the instability issue worsens as assemblies grow in size. Using a novel type of magnetically-bonded tiles carried by bristle-bot drives, we propose here a framework that reverses this tendency; i.e., as an assembly grows, it becomes more stable. Stability is achieved by introducing two sets of tiles that move in opposite directions, thus zeroing the assembly net force. Using physics-based computational experiments, we compare the performance of the proposed approach with the common orbital shaking method, proving that the proposed system of tiles indeed possesses self-stabilizing characteristics. Our approach enables assemblies containing hundreds of tiles to be built, while the shaking approach is inherently limited to a few tens of tiles. Our results indicate that one of the primary limitations of mechanical, agitation-based TBSA approaches, instability, might be overcome by employing a swarm of free-running, sensorless mobile robots, herein represented by passive tiles at the macroscopic scale.

  • Název v anglickém jazyce

    Self-Stabilizing Self-Assembly

  • Popis výsledku anglicky

    The emerging field of passive macro-scale tile-based self-assembly (TBSA) shows promise in enabling effective manufacturing processes by harnessing TBSA's intrinsic parallelism. However, current TBSA methodologies still do not fulfill their potentials, largely because such assemblies are often prone to errors, and the size of an individual assembly is limited due to insufficient mechanical stability. Moreover, the instability issue worsens as assemblies grow in size. Using a novel type of magnetically-bonded tiles carried by bristle-bot drives, we propose here a framework that reverses this tendency; i.e., as an assembly grows, it becomes more stable. Stability is achieved by introducing two sets of tiles that move in opposite directions, thus zeroing the assembly net force. Using physics-based computational experiments, we compare the performance of the proposed approach with the common orbital shaking method, proving that the proposed system of tiles indeed possesses self-stabilizing characteristics. Our approach enables assemblies containing hundreds of tiles to be built, while the shaking approach is inherently limited to a few tens of tiles. Our results indicate that one of the primary limitations of mechanical, agitation-based TBSA approaches, instability, might be overcome by employing a swarm of free-running, sensorless mobile robots, herein represented by passive tiles at the macroscopic scale.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Robotics and Automation Letters

  • ISSN

    2377-3766

  • e-ISSN

    2377-3766

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    9763-9769

  • Kód UT WoS článku

    000831182500059

  • EID výsledku v databázi Scopus

    2-s2.0-85135242097