Volumetric Properties and Stiffness Modulus of Asphalt Concrete Mixtures Made with Selected Quarry Fillers: Experimental Investigation and Machine Learning Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00362847" target="_blank" >RIV/68407700:21110/23:00362847 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/ma16031017" target="_blank" >https://doi.org/10.3390/ma16031017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma16031017" target="_blank" >10.3390/ma16031017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Volumetric Properties and Stiffness Modulus of Asphalt Concrete Mixtures Made with Selected Quarry Fillers: Experimental Investigation and Machine Learning Prediction
Popis výsledku v původním jazyce
In recent years, the attention of many researchers in the field of pavement engineering has focused on the search for alternative fillers that could replace Portland cement and traditional limestone in the production of asphalt mixtures. In addition, from a Czech perspective, there was the need to determine the quality of asphalt mixtures prepared with selected fillers provided by different local quarries and suppliers. This paper discusses an experimental investigation and a machine learning modeling carried out by a decision tree CatBoost approach, based on experimentally determined volumetric and mechanical properties of fine-grained asphalt concretes prepared with selected quarry fillers used as an alternative to traditional limestone and Portland cement. Air voids content and stiffness modulus at 15 °C were predicted on the basis of seven input variables, including bulk density, a categorical variable distinguishing the aggregates’ quarry of origin, and five main filler-oxide contents determined by means of X-ray fluorescence spectrometry. All mixtures were prepared by fixing the filler content at 10% by mass, with a bitumen content of 6% (PG 160/220), and with roughly the same grading curve. Model predictive performance was evaluated in terms of six different evaluation metrics with Pearson correlation and coefficient of determination always higher than 0.96 and 0.92, respectively. Based on the results obtained, this study could represent a forward feasibility study on the mathematical prediction of the asphalt mixtures’ mechanical behavior on the basis of its filler mineralogical composition.
Název v anglickém jazyce
Volumetric Properties and Stiffness Modulus of Asphalt Concrete Mixtures Made with Selected Quarry Fillers: Experimental Investigation and Machine Learning Prediction
Popis výsledku anglicky
In recent years, the attention of many researchers in the field of pavement engineering has focused on the search for alternative fillers that could replace Portland cement and traditional limestone in the production of asphalt mixtures. In addition, from a Czech perspective, there was the need to determine the quality of asphalt mixtures prepared with selected fillers provided by different local quarries and suppliers. This paper discusses an experimental investigation and a machine learning modeling carried out by a decision tree CatBoost approach, based on experimentally determined volumetric and mechanical properties of fine-grained asphalt concretes prepared with selected quarry fillers used as an alternative to traditional limestone and Portland cement. Air voids content and stiffness modulus at 15 °C were predicted on the basis of seven input variables, including bulk density, a categorical variable distinguishing the aggregates’ quarry of origin, and five main filler-oxide contents determined by means of X-ray fluorescence spectrometry. All mixtures were prepared by fixing the filler content at 10% by mass, with a bitumen content of 6% (PG 160/220), and with roughly the same grading curve. Model predictive performance was evaluated in terms of six different evaluation metrics with Pearson correlation and coefficient of determination always higher than 0.96 and 0.92, respectively. Based on the results obtained, this study could represent a forward feasibility study on the mathematical prediction of the asphalt mixtures’ mechanical behavior on the basis of its filler mineralogical composition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-04047K" target="_blank" >GF22-04047K: Pokročilé postupy pro stanovení a porozumění únavovému chování asfaltových směsí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
16
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000930195400001
EID výsledku v databázi Scopus
2-s2.0-85147794014