Analysis of viscous incompressible flows of micropolar fluids with thermal convection and mixed boundary conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00365169" target="_blank" >RIV/68407700:21110/23:00365169 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/pamm.202200229" target="_blank" >https://doi.org/10.1002/pamm.202200229</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/pamm.202200229" target="_blank" >10.1002/pamm.202200229</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of viscous incompressible flows of micropolar fluids with thermal convection and mixed boundary conditions
Popis výsledku v původním jazyce
The Navier-Stokes equations do not take into account the microstructure of the fluid in the sense that they do not consider the angular momentum of small particles of the fluid due to their rotation. The model of micropolar fluid represents a generalization of the well-established Navier-Stokes equations, in such a way that it introduces a new kinematic vector field called microrotation (the angular velocity field of rotation of particles) and adds a new vectorial equation, expressing the conservation of the angular momentum. We will be concerned with the initial boundary value problem for the flow of micropolar heat conducting fluids in a two-dimensional channel with mixed boundary conditions. The considered boundary conditions are of three types: the Dirichlet boundary conditions on the inflow, the Navier type conditions on solid surfaces and Neumann-type boundary conditions on the outflow of the channel. The homogeneous Dirichlet boundary conditions on solid surfaces for the microrotation is commonly used in practice. However, imposing such condition is doubtful from the physical point of view. For that reason, more general boundary conditions for the microrotation were proposed throughout the engineering literature to take into account the rotation of the microelements on the solid boundary, linking the velocity and microrotation through the so-called boundary viscosity. The well-posedness of problems with different types of boundary conditions for microrotation are completely unexplored. The present contribution is devoted to the analysis of the existence and uniqueness of the solution.
Název v anglickém jazyce
Analysis of viscous incompressible flows of micropolar fluids with thermal convection and mixed boundary conditions
Popis výsledku anglicky
The Navier-Stokes equations do not take into account the microstructure of the fluid in the sense that they do not consider the angular momentum of small particles of the fluid due to their rotation. The model of micropolar fluid represents a generalization of the well-established Navier-Stokes equations, in such a way that it introduces a new kinematic vector field called microrotation (the angular velocity field of rotation of particles) and adds a new vectorial equation, expressing the conservation of the angular momentum. We will be concerned with the initial boundary value problem for the flow of micropolar heat conducting fluids in a two-dimensional channel with mixed boundary conditions. The considered boundary conditions are of three types: the Dirichlet boundary conditions on the inflow, the Navier type conditions on solid surfaces and Neumann-type boundary conditions on the outflow of the channel. The homogeneous Dirichlet boundary conditions on solid surfaces for the microrotation is commonly used in practice. However, imposing such condition is doubtful from the physical point of view. For that reason, more general boundary conditions for the microrotation were proposed throughout the engineering literature to take into account the rotation of the microelements on the solid boundary, linking the velocity and microrotation through the so-called boundary viscosity. The well-posedness of problems with different types of boundary conditions for microrotation are completely unexplored. The present contribution is devoted to the analysis of the existence and uniqueness of the solution.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PAMM (Proceedings in Applied Mathematics and Mechanics)
ISSN
1617-7061
e-ISSN
1617-7061
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—