Application of Dimensionality Reduction and Machine Learning Methods for the Interpretation of Gas Sensor Array Readouts from Mold-Threatened Buildings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00367152" target="_blank" >RIV/68407700:21110/23:00367152 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/75081431:_____/23:00002581
Výsledek na webu
<a href="https://doi.org/10.3390/app13158588" target="_blank" >https://doi.org/10.3390/app13158588</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app13158588" target="_blank" >10.3390/app13158588</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Dimensionality Reduction and Machine Learning Methods for the Interpretation of Gas Sensor Array Readouts from Mold-Threatened Buildings
Popis výsledku v původním jazyce
Paper is in the scope of moisture-related problems which are connected with mold threat in buildings, sick building syndrome (SBS) as well as application of electronic nose for evaluation of different building envelopes and building materials. The machine learning methods used to analyze multidimensional signals are important components of the e-nose system. These multidimensional signals are derived from a gas sensor array, which, together with instrumentation, constitute the hardware of this system. The accuracy of the classification and the correctness of the classification of mold threat in buildings largely depend on the appropriate selection of the data analysis methods used. This paper proposes a method of data analysis using Principal Component Analysis, metric multidimensional scaling and Kohonen self-organizing map, which are unsupervised machine learning methods, to visualize and reduce the dimensionality of the data. For the final classification of observations and the identification of datasets from gas sensor arrays analyzing air from buildings threatened by mold, as well as from other reference materials, supervised learning methods such as hierarchical cluster analysis, MLP neural network and the random forest method were used.
Název v anglickém jazyce
Application of Dimensionality Reduction and Machine Learning Methods for the Interpretation of Gas Sensor Array Readouts from Mold-Threatened Buildings
Popis výsledku anglicky
Paper is in the scope of moisture-related problems which are connected with mold threat in buildings, sick building syndrome (SBS) as well as application of electronic nose for evaluation of different building envelopes and building materials. The machine learning methods used to analyze multidimensional signals are important components of the e-nose system. These multidimensional signals are derived from a gas sensor array, which, together with instrumentation, constitute the hardware of this system. The accuracy of the classification and the correctness of the classification of mold threat in buildings largely depend on the appropriate selection of the data analysis methods used. This paper proposes a method of data analysis using Principal Component Analysis, metric multidimensional scaling and Kohonen self-organizing map, which are unsupervised machine learning methods, to visualize and reduce the dimensionality of the data. For the final classification of observations and the identification of datasets from gas sensor arrays analyzing air from buildings threatened by mold, as well as from other reference materials, supervised learning methods such as hierarchical cluster analysis, MLP neural network and the random forest method were used.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-00420S" target="_blank" >GA22-00420S: Funkční charakteristiky a environmentální dopad vápenných omítek s přírodními přísadami pro rekonstrukce historických budov</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
13
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
001046173800001
EID výsledku v databázi Scopus
2-s2.0-85167901347