Classification of Mold-Infested Buildings Using Gas Sensors Readouts and Support Vector Machine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00342887" target="_blank" >RIV/68407700:21110/20:00342887 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0025889" target="_blank" >https://doi.org/10.1063/5.0025889</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0025889" target="_blank" >10.1063/5.0025889</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of Mold-Infested Buildings Using Gas Sensors Readouts and Support Vector Machine
Popis výsledku v původním jazyce
Increased humidity of building envelopes frequently leads to the appearance and growth of mold, which is one of the most important factors concerning Sick Building Syndrome evaluation. Detection of Volatile Organic Compounds (VOCs) emitted by the fungi can be performed using gas sensor arrays. Array output in a form of multidimensional electric signals has to be analyzed by means of appropriate statistical methods. The idea presented within this paper is to use Support Vector Machine (SVM) in the classification of the mold-infested buildings because of different admixture of fungal VOCs within their indoor atmosphere. The mappings used by SVM schemes are designed to ensure that dot products of pairs of input data vectors are computed in terms of the variables in the original space, by defining them in terms of a kernel function k(x,y) selected to suit the problem. Using different types of kernel function actual levels of contamination could be assessed based on readouts from a Metal Oxide Semiconductor (MOS) sensors array. SVM method is appropriated for situations where the functional form of the relationship between signals from sensor array and the classes of contamination is unknown or relationship is complex. The ultidimensional sensor readouts pertaining to the air sampled near the building envelopes in varying degree of mold-contamination, compared with clean and synthetic air, are interpreted and presented.
Název v anglickém jazyce
Classification of Mold-Infested Buildings Using Gas Sensors Readouts and Support Vector Machine
Popis výsledku anglicky
Increased humidity of building envelopes frequently leads to the appearance and growth of mold, which is one of the most important factors concerning Sick Building Syndrome evaluation. Detection of Volatile Organic Compounds (VOCs) emitted by the fungi can be performed using gas sensor arrays. Array output in a form of multidimensional electric signals has to be analyzed by means of appropriate statistical methods. The idea presented within this paper is to use Support Vector Machine (SVM) in the classification of the mold-infested buildings because of different admixture of fungal VOCs within their indoor atmosphere. The mappings used by SVM schemes are designed to ensure that dot products of pairs of input data vectors are computed in terms of the variables in the original space, by defining them in terms of a kernel function k(x,y) selected to suit the problem. Using different types of kernel function actual levels of contamination could be assessed based on readouts from a Metal Oxide Semiconductor (MOS) sensors array. SVM method is appropriated for situations where the functional form of the relationship between signals from sensor array and the classes of contamination is unknown or relationship is complex. The ultidimensional sensor readouts pertaining to the air sampled near the building envelopes in varying degree of mold-contamination, compared with clean and synthetic air, are interpreted and presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01558S" target="_blank" >GA19-01558S: Vliv biofilmů na tepelně-vlhkostní chování fasádních materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings 2275
ISBN
978-0-7354-4005-0
ISSN
—
e-ISSN
1551-7616
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
AIP Publishing, APL, the American Institute of Physics
Místo vydání
Melville, NY
Místo konání akce
Eger
Datum konání akce
2. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—