Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Density-based clustering of E-nose output from mold-contaminated buildings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00357158" target="_blank" >RIV/68407700:21110/21:00357158 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1063/5.0070164" target="_blank" >https://doi.org/10.1063/5.0070164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0070164" target="_blank" >10.1063/5.0070164</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Density-based clustering of E-nose output from mold-contaminated buildings

  • Popis výsledku v původním jazyce

    Increase of humidity in building envelopes often leads to the growth of mold, which is one of important factors for evaluation of Sick Building Syndrome. The estimation of mold contamination level in buildings based on electronic nose application is considered as fast and early detection technique, however interpretation of readouts is quite complicated, mostly because the signals obtained from sensor arrays are multidimensional. Moreover, there is no single optimal reference method used in practice. The idea of the presented approach is to group the readouts from sensor array into homogeneous sets of observations, which are characterized by the different level of mold contamination. The signals analyzed in the original 8-dimensional space are characterized by high variability depending on the conditions prevailing in the tested rooms, while the set of readouts may have a rather complicated shape (spherical-shaped clusters or convex clusters). In such a situation, the cluster analysis method based on density of signals could be applied. The most well-known density- based clustering method is DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Unlike k-means or k-median, DBSCAN does not require the number of clusters as a parameter. Instead, it infers the number of clusters based on the data, and it can discover clusters of arbitrary shape (for comparison, k-means usually discovers spherical clusters). DBSCAN requires two parameters: ϵ (eps) and the minimum number of points required to form a dense region (minPts).

  • Název v anglickém jazyce

    Density-based clustering of E-nose output from mold-contaminated buildings

  • Popis výsledku anglicky

    Increase of humidity in building envelopes often leads to the growth of mold, which is one of important factors for evaluation of Sick Building Syndrome. The estimation of mold contamination level in buildings based on electronic nose application is considered as fast and early detection technique, however interpretation of readouts is quite complicated, mostly because the signals obtained from sensor arrays are multidimensional. Moreover, there is no single optimal reference method used in practice. The idea of the presented approach is to group the readouts from sensor array into homogeneous sets of observations, which are characterized by the different level of mold contamination. The signals analyzed in the original 8-dimensional space are characterized by high variability depending on the conditions prevailing in the tested rooms, while the set of readouts may have a rather complicated shape (spherical-shaped clusters or convex clusters). In such a situation, the cluster analysis method based on density of signals could be applied. The most well-known density- based clustering method is DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Unlike k-means or k-median, DBSCAN does not require the number of clusters as a parameter. Instead, it infers the number of clusters based on the data, and it can discover clusters of arbitrary shape (for comparison, k-means usually discovers spherical clusters). DBSCAN requires two parameters: ϵ (eps) and the minimum number of points required to form a dense region (minPts).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    AIP Conference Proceedings 2429

  • ISBN

    978-0-7354-4139-2

  • ISSN

    0094-243X

  • e-ISSN

    1551-7616

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    AIP Conference Proceedings

  • Místo vydání

    New York

  • Místo konání akce

    Kazimierz Dolny

  • Datum konání akce

    1. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku