Density-based clustering of E-nose output from mold-contaminated buildings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00357158" target="_blank" >RIV/68407700:21110/21:00357158 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0070164" target="_blank" >https://doi.org/10.1063/5.0070164</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0070164" target="_blank" >10.1063/5.0070164</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Density-based clustering of E-nose output from mold-contaminated buildings
Popis výsledku v původním jazyce
Increase of humidity in building envelopes often leads to the growth of mold, which is one of important factors for evaluation of Sick Building Syndrome. The estimation of mold contamination level in buildings based on electronic nose application is considered as fast and early detection technique, however interpretation of readouts is quite complicated, mostly because the signals obtained from sensor arrays are multidimensional. Moreover, there is no single optimal reference method used in practice. The idea of the presented approach is to group the readouts from sensor array into homogeneous sets of observations, which are characterized by the different level of mold contamination. The signals analyzed in the original 8-dimensional space are characterized by high variability depending on the conditions prevailing in the tested rooms, while the set of readouts may have a rather complicated shape (spherical-shaped clusters or convex clusters). In such a situation, the cluster analysis method based on density of signals could be applied. The most well-known density- based clustering method is DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Unlike k-means or k-median, DBSCAN does not require the number of clusters as a parameter. Instead, it infers the number of clusters based on the data, and it can discover clusters of arbitrary shape (for comparison, k-means usually discovers spherical clusters). DBSCAN requires two parameters: ϵ (eps) and the minimum number of points required to form a dense region (minPts).
Název v anglickém jazyce
Density-based clustering of E-nose output from mold-contaminated buildings
Popis výsledku anglicky
Increase of humidity in building envelopes often leads to the growth of mold, which is one of important factors for evaluation of Sick Building Syndrome. The estimation of mold contamination level in buildings based on electronic nose application is considered as fast and early detection technique, however interpretation of readouts is quite complicated, mostly because the signals obtained from sensor arrays are multidimensional. Moreover, there is no single optimal reference method used in practice. The idea of the presented approach is to group the readouts from sensor array into homogeneous sets of observations, which are characterized by the different level of mold contamination. The signals analyzed in the original 8-dimensional space are characterized by high variability depending on the conditions prevailing in the tested rooms, while the set of readouts may have a rather complicated shape (spherical-shaped clusters or convex clusters). In such a situation, the cluster analysis method based on density of signals could be applied. The most well-known density- based clustering method is DBSCAN (Density-Based Spatial Clustering of Applications with Noise). Unlike k-means or k-median, DBSCAN does not require the number of clusters as a parameter. Instead, it infers the number of clusters based on the data, and it can discover clusters of arbitrary shape (for comparison, k-means usually discovers spherical clusters). DBSCAN requires two parameters: ϵ (eps) and the minimum number of points required to form a dense region (minPts).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings 2429
ISBN
978-0-7354-4139-2
ISSN
0094-243X
e-ISSN
1551-7616
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
AIP Conference Proceedings
Místo vydání
New York
Místo konání akce
Kazimierz Dolny
Datum konání akce
1. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—