Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Random Forest Method for Analysis of Gas Sensor Readouts From Mold-threatened Buildings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00370799" target="_blank" >RIV/68407700:21110/23:00370799 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1063/5.0147200" target="_blank" >http://dx.doi.org/10.1063/5.0147200</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0147200" target="_blank" >10.1063/5.0147200</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Random Forest Method for Analysis of Gas Sensor Readouts From Mold-threatened Buildings

  • Popis výsledku v původním jazyce

    Humidity increase in buildings frequently leads to the growth of mold, which is one of significant factors for evaluation of Sick Building Syndrome. The assessment of mold contamination level in buildings based on gas sensors array readouts is considered as a cheap and fast detection technique; nonetheless, interpretation of signals is quite complex, mostly because the signals obtained from sensors are multidimensional. Furthermore, there is no sole reference method used in practice. The signals analyzed in the original multi-dimensional space are characterized by high variability, depending on the conditions in the tested buildings. In such a situation, the random forest methodology can be applied, which till now has been successfully involved to a wide range of prediction problems and has few parameters to tune. Aside from being simple to use, the method is generally recognized for its accuracy and ability to deal with small sample sizes and high-dimensional feature spaces. At the same time, it is easily parallelizable and therefore has the potential to deal with large real-life systems. This supervised learning procedure operates according to the simple but effective “divide and conquer” principle: sample fractions of the data, grow a randomized tree predictor on each small piece, then paste (aggregate) these predictors together.

  • Název v anglickém jazyce

    Application of Random Forest Method for Analysis of Gas Sensor Readouts From Mold-threatened Buildings

  • Popis výsledku anglicky

    Humidity increase in buildings frequently leads to the growth of mold, which is one of significant factors for evaluation of Sick Building Syndrome. The assessment of mold contamination level in buildings based on gas sensors array readouts is considered as a cheap and fast detection technique; nonetheless, interpretation of signals is quite complex, mostly because the signals obtained from sensors are multidimensional. Furthermore, there is no sole reference method used in practice. The signals analyzed in the original multi-dimensional space are characterized by high variability, depending on the conditions in the tested buildings. In such a situation, the random forest methodology can be applied, which till now has been successfully involved to a wide range of prediction problems and has few parameters to tune. Aside from being simple to use, the method is generally recognized for its accuracy and ability to deal with small sample sizes and high-dimensional feature spaces. At the same time, it is easily parallelizable and therefore has the potential to deal with large real-life systems. This supervised learning procedure operates according to the simple but effective “divide and conquer” principle: sample fractions of the data, grow a randomized tree predictor on each small piece, then paste (aggregate) these predictors together.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20506 - Coating and films

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Central European Symposium on Thermophysics 2022 (CEST 2022)

  • ISBN

  • ISSN

    1551-7616

  • e-ISSN

    1551-7616

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    AIP Conference Proceedings

  • Místo vydání

    New York

  • Místo konání akce

    Olomouc

  • Datum konání akce

    31. 8. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku