Application of Random Forest Method for Analysis of Gas Sensor Readouts From Mold-threatened Buildings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00370799" target="_blank" >RIV/68407700:21110/23:00370799 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/5.0147200" target="_blank" >http://dx.doi.org/10.1063/5.0147200</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0147200" target="_blank" >10.1063/5.0147200</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Random Forest Method for Analysis of Gas Sensor Readouts From Mold-threatened Buildings
Popis výsledku v původním jazyce
Humidity increase in buildings frequently leads to the growth of mold, which is one of significant factors for evaluation of Sick Building Syndrome. The assessment of mold contamination level in buildings based on gas sensors array readouts is considered as a cheap and fast detection technique; nonetheless, interpretation of signals is quite complex, mostly because the signals obtained from sensors are multidimensional. Furthermore, there is no sole reference method used in practice. The signals analyzed in the original multi-dimensional space are characterized by high variability, depending on the conditions in the tested buildings. In such a situation, the random forest methodology can be applied, which till now has been successfully involved to a wide range of prediction problems and has few parameters to tune. Aside from being simple to use, the method is generally recognized for its accuracy and ability to deal with small sample sizes and high-dimensional feature spaces. At the same time, it is easily parallelizable and therefore has the potential to deal with large real-life systems. This supervised learning procedure operates according to the simple but effective “divide and conquer” principle: sample fractions of the data, grow a randomized tree predictor on each small piece, then paste (aggregate) these predictors together.
Název v anglickém jazyce
Application of Random Forest Method for Analysis of Gas Sensor Readouts From Mold-threatened Buildings
Popis výsledku anglicky
Humidity increase in buildings frequently leads to the growth of mold, which is one of significant factors for evaluation of Sick Building Syndrome. The assessment of mold contamination level in buildings based on gas sensors array readouts is considered as a cheap and fast detection technique; nonetheless, interpretation of signals is quite complex, mostly because the signals obtained from sensors are multidimensional. Furthermore, there is no sole reference method used in practice. The signals analyzed in the original multi-dimensional space are characterized by high variability, depending on the conditions in the tested buildings. In such a situation, the random forest methodology can be applied, which till now has been successfully involved to a wide range of prediction problems and has few parameters to tune. Aside from being simple to use, the method is generally recognized for its accuracy and ability to deal with small sample sizes and high-dimensional feature spaces. At the same time, it is easily parallelizable and therefore has the potential to deal with large real-life systems. This supervised learning procedure operates according to the simple but effective “divide and conquer” principle: sample fractions of the data, grow a randomized tree predictor on each small piece, then paste (aggregate) these predictors together.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Central European Symposium on Thermophysics 2022 (CEST 2022)
ISBN
—
ISSN
1551-7616
e-ISSN
1551-7616
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
AIP Conference Proceedings
Místo vydání
New York
Místo konání akce
Olomouc
Datum konání akce
31. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—