Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of number and surface area of the aggregates on machine learning prediction performance of recycled hot-mix asphalt

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00376329" target="_blank" >RIV/68407700:21110/24:00376329 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.conbuildmat.2024.137788" target="_blank" >https://doi.org/10.1016/j.conbuildmat.2024.137788</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.conbuildmat.2024.137788" target="_blank" >10.1016/j.conbuildmat.2024.137788</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of number and surface area of the aggregates on machine learning prediction performance of recycled hot-mix asphalt

  • Popis výsledku v původním jazyce

    This study addresses the challenge of designing hot-mix asphalt by evaluating the impact of aggregate surface area (ASA) and the number of aggregates (NA) in machine learning (ML) models. A dataset of 107 asphalt mixtures containing 0–50 % reclaimed asphalt pavement (RAP) was analyzed. Virgin aggregates and RAP particles were counted and measured via digital photography to calculate NA and ASA, with specific surface areas determined in a physics engine environment. Then, measured average aggregate particle weights were calibrated using 13 specimens. Various ML models were developed with the random forest algorithm, incorporating different input feature sets (IFS), including NA, ASA, and other basic features of the mixtures. Results revealed that including NA and ASA did not significantly improve model performance compared to using only gradation percentage inputs. Consequently, IFS-4, which includes only gradation inputs, was recommended for simplicity. The most crucial features were found to be gradation-related, with R(2) values around 0.90 and above achieved for stiffness modulus (ITSM), air voids, Marshall stability (MS), and theoretical maximum density (Gmm). Specifically, the test R(2) values for air voids, ITSM, and MS were 0.96, 0.89, and 0.87, with a mean absolute percentage error (MAPE) of 5.8 %, 5.4 %, and 5.6 %, respectively. Predictions for Gmm demonstrated the highest performance across all metrics with an R(2) value of 0.99. Air void content predictions performed better than those for ITSM, MS, and MF regarding R(2) and mean squared error (MSE) values, although their MAPE values were similar. These findings suggest that while NA and ASA provide additional details, gradation features are the most critical inputs for accurate ML model predictions in asphalt mixture design.

  • Název v anglickém jazyce

    Effect of number and surface area of the aggregates on machine learning prediction performance of recycled hot-mix asphalt

  • Popis výsledku anglicky

    This study addresses the challenge of designing hot-mix asphalt by evaluating the impact of aggregate surface area (ASA) and the number of aggregates (NA) in machine learning (ML) models. A dataset of 107 asphalt mixtures containing 0–50 % reclaimed asphalt pavement (RAP) was analyzed. Virgin aggregates and RAP particles were counted and measured via digital photography to calculate NA and ASA, with specific surface areas determined in a physics engine environment. Then, measured average aggregate particle weights were calibrated using 13 specimens. Various ML models were developed with the random forest algorithm, incorporating different input feature sets (IFS), including NA, ASA, and other basic features of the mixtures. Results revealed that including NA and ASA did not significantly improve model performance compared to using only gradation percentage inputs. Consequently, IFS-4, which includes only gradation inputs, was recommended for simplicity. The most crucial features were found to be gradation-related, with R(2) values around 0.90 and above achieved for stiffness modulus (ITSM), air voids, Marshall stability (MS), and theoretical maximum density (Gmm). Specifically, the test R(2) values for air voids, ITSM, and MS were 0.96, 0.89, and 0.87, with a mean absolute percentage error (MAPE) of 5.8 %, 5.4 %, and 5.6 %, respectively. Predictions for Gmm demonstrated the highest performance across all metrics with an R(2) value of 0.99. Air void content predictions performed better than those for ITSM, MS, and MF regarding R(2) and mean squared error (MSE) values, although their MAPE values were similar. These findings suggest that while NA and ASA provide additional details, gradation features are the most critical inputs for accurate ML model predictions in asphalt mixture design.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Construction and Building Materials

  • ISSN

    0950-0618

  • e-ISSN

    1879-0526

  • Svazek periodika

    445

  • Číslo periodika v rámci svazku

    září

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    25

  • Strana od-do

  • Kód UT WoS článku

    001297866900001

  • EID výsledku v databázi Scopus

    2-s2.0-85201488750