Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Number of arrhythmia beats determination in Holter electrocardiogram: How many clusters?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F03%3A03088729" target="_blank" >RIV/68407700:21220/03:03088729 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Number of arrhythmia beats determination in Holter electrocardiogram: How many clusters?

  • Popis výsledku v původním jazyce

    Holter signals correspond to long-term electrocardiograph (ECG) registers. Manual inspection of such signals is difficult because of the enormous quantity of beats involved. Throughout the literature several methods of automatically detecting and separating the significant beats using unsupervised learning were proposed. An important part of the unsupervised learning problem is determining the number of constituent clusters which best describe the data. In this paper we concentrate on the problem of thenumber of arrhythmia beats-clusters selection presented in Holter ECG. We apply and compare several criteria for assessing the number of clusters and we show that, with a Gaussian mixture model, the approach is able to select 'an optimal' number of arrhythmia beats and so partition a Holter ECG. The following criteria has been examined: Bayesian selection method, Akaike's information criteria, minimum description length, minimum message length, fuzzy hyper volume, evidence density and .

  • Název v anglickém jazyce

    Number of arrhythmia beats determination in Holter electrocardiogram: How many clusters?

  • Popis výsledku anglicky

    Holter signals correspond to long-term electrocardiograph (ECG) registers. Manual inspection of such signals is difficult because of the enormous quantity of beats involved. Throughout the literature several methods of automatically detecting and separating the significant beats using unsupervised learning were proposed. An important part of the unsupervised learning problem is determining the number of constituent clusters which best describe the data. In this paper we concentrate on the problem of thenumber of arrhythmia beats-clusters selection presented in Holter ECG. We apply and compare several criteria for assessing the number of clusters and we show that, with a Gaussian mixture model, the approach is able to select 'an optimal' number of arrhythmia beats and so partition a Holter ECG. The following criteria has been examined: Bayesian selection method, Akaike's information criteria, minimum description length, minimum message length, fuzzy hyper volume, evidence density and .

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2003

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    EMBC 2003

  • ISBN

    0-7803-7790-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    2845-2848

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Cancun

  • Datum konání akce

    17. 9. 2003

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku