Number of arrhythmia beats determination in Holter electrocardiogram: How many clusters?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F03%3A03088729" target="_blank" >RIV/68407700:21220/03:03088729 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Number of arrhythmia beats determination in Holter electrocardiogram: How many clusters?
Popis výsledku v původním jazyce
Holter signals correspond to long-term electrocardiograph (ECG) registers. Manual inspection of such signals is difficult because of the enormous quantity of beats involved. Throughout the literature several methods of automatically detecting and separating the significant beats using unsupervised learning were proposed. An important part of the unsupervised learning problem is determining the number of constituent clusters which best describe the data. In this paper we concentrate on the problem of thenumber of arrhythmia beats-clusters selection presented in Holter ECG. We apply and compare several criteria for assessing the number of clusters and we show that, with a Gaussian mixture model, the approach is able to select 'an optimal' number of arrhythmia beats and so partition a Holter ECG. The following criteria has been examined: Bayesian selection method, Akaike's information criteria, minimum description length, minimum message length, fuzzy hyper volume, evidence density and .
Název v anglickém jazyce
Number of arrhythmia beats determination in Holter electrocardiogram: How many clusters?
Popis výsledku anglicky
Holter signals correspond to long-term electrocardiograph (ECG) registers. Manual inspection of such signals is difficult because of the enormous quantity of beats involved. Throughout the literature several methods of automatically detecting and separating the significant beats using unsupervised learning were proposed. An important part of the unsupervised learning problem is determining the number of constituent clusters which best describe the data. In this paper we concentrate on the problem of thenumber of arrhythmia beats-clusters selection presented in Holter ECG. We apply and compare several criteria for assessing the number of clusters and we show that, with a Gaussian mixture model, the approach is able to select 'an optimal' number of arrhythmia beats and so partition a Holter ECG. The following criteria has been examined: Bayesian selection method, Akaike's information criteria, minimum description length, minimum message length, fuzzy hyper volume, evidence density and .
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EMBC 2003
ISBN
0-7803-7790-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
2845-2848
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Cancun
Datum konání akce
17. 9. 2003
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—