Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03099614" target="_blank" >RIV/68407700:21230/04:03099614 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pre-clustering of Electrocardiographic Signals using Ergodic Hidden Markov Models

  • Popis výsledku v původním jazyce

    Holter signals are ambulatory long-term electrocardiographic (ECG) registers used to detect heart diseases which are difficult to find in normal ECGs. These signals normally include several registers and its duration is up to 48 hours. The principal problem for the cardiologists consists of the manual inspection of the whole holter ECG to find all those beats whose morphology differ from the normal synus rhythm. The later analisys of these arrhythmia beats yields a diagnostic from the pacient's heart condition. Using Hidden Markov Models (HMM) for computer clustering has became a very useful tool for cardiologists avoiding the manual inspection. In this paper we improve the performance of the HMM clustering method introducing a preclustering stage in order to diminish the number of elements to be finally processed and reducing the global computational cost. An experimental comparative study is carried out, utilizing records form the MIT-BIH Arrhythmia database. Finally some results ar.

  • Název v anglickém jazyce

    Pre-clustering of Electrocardiographic Signals using Ergodic Hidden Markov Models

  • Popis výsledku anglicky

    Holter signals are ambulatory long-term electrocardiographic (ECG) registers used to detect heart diseases which are difficult to find in normal ECGs. These signals normally include several registers and its duration is up to 48 hours. The principal problem for the cardiologists consists of the manual inspection of the whole holter ECG to find all those beats whose morphology differ from the normal synus rhythm. The later analisys of these arrhythmia beats yields a diagnostic from the pacient's heart condition. Using Hidden Markov Models (HMM) for computer clustering has became a very useful tool for cardiologists avoiding the manual inspection. In this paper we improve the performance of the HMM clustering method introducing a preclustering stage in order to diminish the number of elements to be finally processed and reducing the global computational cost. An experimental comparative study is carried out, utilizing records form the MIT-BIH Arrhythmia database. Finally some results ar.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Structural, Syntactic, and Statistical Pattern Recognition

  • ISBN

    3-540-22570-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    939-947

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Lisbon

  • Datum konání akce

    18. 8. 2004

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku