Hilbert-huang transform and neural networks for electrocardiogram modeling and prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F14%3A00232148" target="_blank" >RIV/68407700:21220/14:00232148 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICNC.2014.6975896" target="_blank" >http://dx.doi.org/10.1109/ICNC.2014.6975896</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICNC.2014.6975896" target="_blank" >10.1109/ICNC.2014.6975896</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hilbert-huang transform and neural networks for electrocardiogram modeling and prediction
Popis výsledku v původním jazyce
This paper presents a predictive model for the prediction and modeling of nonlinear, chaotic, and nonstationary electrocardiogram signals. The model is based on the combined usage of Hilbert-Huang transform, False nearest neighbors, and a novel neural network architecture. This model is intended to increase the prediction accuracy by applying the Empirical Mode Decomposition over a signal, and to reconstruct the signal by adding each calculated Intrinsic Mode Function and its residue. The Intrinsic Mode Function that obtains the highest frequency oscillation is not considered during the reconstruction. The optimal embedding dimension space of the reconstructed signal is obtained by False Nearest Neighbors algorithm. Finally, for the prediction horizon, a neural network retraining technique is applied to the reconstructed signal. The method has been validated using the record 103 from MIT-BIH arrhythmia database. Results are very promising since the measured root mean squared errors are 0.031, 0.05, and 0.085 of the ECG amplitude, for the prediction horizons of 0.0028, 0.0056, 0.0083 seconds, respectively.
Název v anglickém jazyce
Hilbert-huang transform and neural networks for electrocardiogram modeling and prediction
Popis výsledku anglicky
This paper presents a predictive model for the prediction and modeling of nonlinear, chaotic, and nonstationary electrocardiogram signals. The model is based on the combined usage of Hilbert-Huang transform, False nearest neighbors, and a novel neural network architecture. This model is intended to increase the prediction accuracy by applying the Empirical Mode Decomposition over a signal, and to reconstruct the signal by adding each calculated Intrinsic Mode Function and its residue. The Intrinsic Mode Function that obtains the highest frequency oscillation is not considered during the reconstruction. The optimal embedding dimension space of the reconstructed signal is obtained by False Nearest Neighbors algorithm. Finally, for the prediction horizon, a neural network retraining technique is applied to the reconstructed signal. The method has been validated using the record 103 from MIT-BIH arrhythmia database. Results are very promising since the measured root mean squared errors are 0.031, 0.05, and 0.085 of the ECG amplitude, for the prediction horizons of 0.0028, 0.0056, 0.0083 seconds, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
10th International Conference on Natural Computation, ICNC 2014; Xiamen; China; 19 August 2014 through 21 August 2014; Code 111723
ISBN
978-1-4799-5151-2
ISSN
2469-8814
e-ISSN
—
Počet stran výsledku
7
Strana od-do
561-567
Název nakladatele
IEEE
Místo vydání
Beijing
Místo konání akce
Xiamen
Datum konání akce
19. 8. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000393406200097