E-vehicle energy consumption optimization based on fleet and infrastructure information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F15%3A00232392" target="_blank" >RIV/68407700:21220/15:00232392 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/15:00233057
Výsledek na webu
<a href="http://mech.fs.cvut.cz" target="_blank" >http://mech.fs.cvut.cz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-23923-1_41" target="_blank" >10.1007/978-3-319-23923-1_41</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
E-vehicle energy consumption optimization based on fleet and infrastructure information
Popis výsledku v původním jazyce
Nowadays vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and bigger fleets. Thanks to mechatronic design of the vehicles and their components, there are many means of optimizing their performance. The paper shows an approach developed to increase the range of e-vehicle operation substantially. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route and vehicle and dynamic optimization. The a-priori knowledge is taken into account.
Název v anglickém jazyce
E-vehicle energy consumption optimization based on fleet and infrastructure information
Popis výsledku anglicky
Nowadays vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and bigger fleets. Thanks to mechatronic design of the vehicles and their components, there are many means of optimizing their performance. The paper shows an approach developed to increase the range of e-vehicle operation substantially. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route and vehicle and dynamic optimization. The a-priori knowledge is taken into account.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020020" target="_blank" >TE01020020: Centrum kompetence automobilového průmyslu Josefa Božka</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advanced Mechatronics Solutions
ISBN
978-3-319-23921-7
Počet stran výsledku
12
Strana od-do
120-131
Počet stran knihy
668
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—