Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dynamic Optimization of the E-Vehicle Route Profile

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00306882" target="_blank" >RIV/68407700:21220/16:00306882 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://papers.sae.org/2016-01-0156/" target="_blank" >http://papers.sae.org/2016-01-0156/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4271/2016-01-0156" target="_blank" >10.4271/2016-01-0156</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dynamic Optimization of the E-Vehicle Route Profile

  • Popis výsledku v původním jazyce

    Current vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and larger fleets. Thanks to mechatronic design of vehicles and their components and availability of high capacity data connection with computational centers (clouds), there are many means to optimize their performance, both by planning prior the trip and recalculations during the route.Although many aspects of this opportunity were already addressed, the paper shows an approach developed to further increase the range of e-vehicle operation. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route, vehicle and dynamic optimization. The most important part of the procedure is performed in the cloud, using both computational power and rich information resources. Suitable route discretization into sections is most important part of the algorithm. The various information resources are used. Accumulated experience coming from fleet operation is very important as well. Methods for automation of this procedure are presented. Subsequently, feasible initial values of section parameters are found using heuristic rules devised from good driver’s practice and backward calculation based on dynamic programming principals. Designed velocity profile is further optimized based on simplified, but very fast energy consumption models, verified and fine-tuned on detailed simulation model of the vehicle. The velocity profile is updated when requested and finally loaded into on-board control unit. Model based predictive controller is used to keep the vehicle with its driver efficiently on defined track. The proposed strategy is verified in simulation environment and prepared to be implemented on test vehicle and cloud system.

  • Název v anglickém jazyce

    Dynamic Optimization of the E-Vehicle Route Profile

  • Popis výsledku anglicky

    Current vehicles, especially the electric ones, are complex mechatronic devices. The pickup vehicles of small sizes are currently used in transport considerably. They often operate within a repeating scheme of a limited variety of tracks and larger fleets. Thanks to mechatronic design of vehicles and their components and availability of high capacity data connection with computational centers (clouds), there are many means to optimize their performance, both by planning prior the trip and recalculations during the route.Although many aspects of this opportunity were already addressed, the paper shows an approach developed to further increase the range of e-vehicle operation. It is based on prior information about the route profile, traffic density, road conditions, past behaviour, mathematical models of the route, vehicle and dynamic optimization. The most important part of the procedure is performed in the cloud, using both computational power and rich information resources. Suitable route discretization into sections is most important part of the algorithm. The various information resources are used. Accumulated experience coming from fleet operation is very important as well. Methods for automation of this procedure are presented. Subsequently, feasible initial values of section parameters are found using heuristic rules devised from good driver’s practice and backward calculation based on dynamic programming principals. Designed velocity profile is further optimized based on simplified, but very fast energy consumption models, verified and fine-tuned on detailed simulation model of the vehicle. The velocity profile is updated when requested and finally loaded into on-board control unit. Model based predictive controller is used to keep the vehicle with its driver efficiently on defined track. The proposed strategy is verified in simulation environment and prepared to be implemented on test vehicle and cloud system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JT - Pohon, motory a paliva

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SAE 2016 World Congress&Exhibition

  • ISBN

  • ISSN

    0148-7191

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    SAE International

  • Místo vydání

    Warrendale, PA

  • Místo konání akce

    Detroit MI

  • Datum konání akce

    12. 4. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku