Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F15%3A00240259" target="_blank" >RIV/68407700:21220/15:00240259 - isvavai.cz</a>
Výsledek na webu
<a href="http://papers.sae.org/2015-01-0212" target="_blank" >http://papers.sae.org/2015-01-0212</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4271/2015-01-0212" target="_blank" >10.4271/2015-01-0212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Popis výsledku v původním jazyce
An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars. The results show the ability of the proposed method to enhance the capability of condition monitoring systems by identifying gear faults at early stages.
Název v anglickém jazyce
Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement
Popis výsledku anglicky
An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars. The results show the ability of the proposed method to enhance the capability of condition monitoring systems by identifying gear faults at early stages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JT - Pohon, motory a paliva
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Název statě ve sborníku
SAE Technical Paper 2015-01-1718
ISBN
—
ISSN
0148-7191
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
SAE International
Místo vydání
Warrendale, PA 15096
Místo konání akce
Detroit
Datum konání akce
21. 4. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—