Adaptive Methodology for Designing a Predictive Model of Cardiac Arrhythmia Symptoms Based on Cubic Neural Unit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00312426" target="_blank" >RIV/68407700:21220/17:00312426 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-773-3-232" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-773-3-232</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-773-3-232" target="_blank" >10.3233/978-1-61499-773-3-232</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Methodology for Designing a Predictive Model of Cardiac Arrhythmia Symptoms Based on Cubic Neural Unit
Popis výsledku v původním jazyce
A cubic neural unit is a kind of a higher-order neural unit which can be used for prediction tasks among others, in the medical field. The example of the tasks includes monitoring cardiac behavior in real-time either for preemptive treatment, or for supporting a doctor to reach a more accurate diagnosis. We propose a predictive model which has been developed as an application in open source code with the aim to make it publicly accessible for research community and medical professionals and also to decrease the implementation cost. The proposed model uses sample-by-sample adaptation of the gradient descent method with error backpropagation. This paper presents an application of a cubic neural unit as a prediction mechanism for abnormal cardiac behavior, and it describes a new adaptive methodology based on application of a dynamic cubic neural unit for cardiac arrhythmia prediction. To validate the model, it has been tested on the data from the Massachusetts Institute of Technology-Beth Israel Hospital Cardiac Record Database. This paper is focused on premature ventricular contraction, atrial premature contraction and normal heartbeat records
Název v anglickém jazyce
Adaptive Methodology for Designing a Predictive Model of Cardiac Arrhythmia Symptoms Based on Cubic Neural Unit
Popis výsledku anglicky
A cubic neural unit is a kind of a higher-order neural unit which can be used for prediction tasks among others, in the medical field. The example of the tasks includes monitoring cardiac behavior in real-time either for preemptive treatment, or for supporting a doctor to reach a more accurate diagnosis. We propose a predictive model which has been developed as an application in open source code with the aim to make it publicly accessible for research community and medical professionals and also to decrease the implementation cost. The proposed model uses sample-by-sample adaptation of the gradient descent method with error backpropagation. This paper presents an application of a cubic neural unit as a prediction mechanism for abnormal cardiac behavior, and it describes a new adaptive methodology based on application of a dynamic cubic neural unit for cardiac arrhythmia prediction. To validate the model, it has been tested on the data from the Massachusetts Institute of Technology-Beth Israel Hospital Cardiac Record Database. This paper is focused on premature ventricular contraction, atrial premature contraction and normal heartbeat records
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 8th International Conference on Applications of Digital Information and Web Technologies
ISBN
978-1-61499-772-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
232-239
Název nakladatele
IOS Press BV
Místo vydání
Amsterdam
Místo konání akce
Juarez City
Datum konání akce
29. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000440621900021