Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00315048" target="_blank" >RIV/68407700:21220/17:00315048 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-773-3-219</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >10.3233/978-1-61499-773-3-219</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns

  • Popis výsledku v původním jazyce

    An electrocardiogram (ECG) is a non-invasive technique that checks for problems with the electrical activity of a patient’s heart. ECG is economical and extremely versatile. Some of its characteristics make it a very useful tool to detect cardiac pathologies. The ECG records a series of characteristic waves called PQRST; however, the QRS complex analysis enables the detection of a type of arrhythmia in an ECG. Technological developments enable the storage of a large amount of data, from which knowledge extraction is impossible without a powerful data processing tool; in particular, an adequate signal processing tool, whose output provides reliable parameters as a basis to make a precise clinical diagnosis. Thus, ECG signal processing creates an opportunity to analyze and recognize possible arrhythmia patterns. This paper reviews the use of artificial neural networks (ANNs) to detect and recognize cardiac arrhythmia patterns. Recurrent neural networks (RNNs) and higher-order neural units are inspected. In addition, the potentials of using higher-order neural units such as the quadratic dynamic neural unit (D-QNU) and dynamic cubic neural unit (D-CNU) for cardiac arrhythmia detection are analyzed.

  • Název v anglickém jazyce

    Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns

  • Popis výsledku anglicky

    An electrocardiogram (ECG) is a non-invasive technique that checks for problems with the electrical activity of a patient’s heart. ECG is economical and extremely versatile. Some of its characteristics make it a very useful tool to detect cardiac pathologies. The ECG records a series of characteristic waves called PQRST; however, the QRS complex analysis enables the detection of a type of arrhythmia in an ECG. Technological developments enable the storage of a large amount of data, from which knowledge extraction is impossible without a powerful data processing tool; in particular, an adequate signal processing tool, whose output provides reliable parameters as a basis to make a precise clinical diagnosis. Thus, ECG signal processing creates an opportunity to analyze and recognize possible arrhythmia patterns. This paper reviews the use of artificial neural networks (ANNs) to detect and recognize cardiac arrhythmia patterns. Recurrent neural networks (RNNs) and higher-order neural units are inspected. In addition, the potentials of using higher-order neural units such as the quadratic dynamic neural unit (D-QNU) and dynamic cubic neural unit (D-CNU) for cardiac arrhythmia detection are analyzed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 8th International Conference on Applications of Digital Information and Web Technologies

  • ISBN

    978-1-61499-772-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    219-231

  • Název nakladatele

    IOS Press BV

  • Místo vydání

    Amsterdam

  • Místo konání akce

    Juarez City

  • Datum konání akce

    29. 3. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000440621900020