Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00315048" target="_blank" >RIV/68407700:21220/17:00315048 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-773-3-219</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-773-3-219" target="_blank" >10.3233/978-1-61499-773-3-219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns
Popis výsledku v původním jazyce
An electrocardiogram (ECG) is a non-invasive technique that checks for problems with the electrical activity of a patient’s heart. ECG is economical and extremely versatile. Some of its characteristics make it a very useful tool to detect cardiac pathologies. The ECG records a series of characteristic waves called PQRST; however, the QRS complex analysis enables the detection of a type of arrhythmia in an ECG. Technological developments enable the storage of a large amount of data, from which knowledge extraction is impossible without a powerful data processing tool; in particular, an adequate signal processing tool, whose output provides reliable parameters as a basis to make a precise clinical diagnosis. Thus, ECG signal processing creates an opportunity to analyze and recognize possible arrhythmia patterns. This paper reviews the use of artificial neural networks (ANNs) to detect and recognize cardiac arrhythmia patterns. Recurrent neural networks (RNNs) and higher-order neural units are inspected. In addition, the potentials of using higher-order neural units such as the quadratic dynamic neural unit (D-QNU) and dynamic cubic neural unit (D-CNU) for cardiac arrhythmia detection are analyzed.
Název v anglickém jazyce
Review on Higher-Order Neural Units to Monitor Cardiac Arrhythmia Patterns
Popis výsledku anglicky
An electrocardiogram (ECG) is a non-invasive technique that checks for problems with the electrical activity of a patient’s heart. ECG is economical and extremely versatile. Some of its characteristics make it a very useful tool to detect cardiac pathologies. The ECG records a series of characteristic waves called PQRST; however, the QRS complex analysis enables the detection of a type of arrhythmia in an ECG. Technological developments enable the storage of a large amount of data, from which knowledge extraction is impossible without a powerful data processing tool; in particular, an adequate signal processing tool, whose output provides reliable parameters as a basis to make a precise clinical diagnosis. Thus, ECG signal processing creates an opportunity to analyze and recognize possible arrhythmia patterns. This paper reviews the use of artificial neural networks (ANNs) to detect and recognize cardiac arrhythmia patterns. Recurrent neural networks (RNNs) and higher-order neural units are inspected. In addition, the potentials of using higher-order neural units such as the quadratic dynamic neural unit (D-QNU) and dynamic cubic neural unit (D-CNU) for cardiac arrhythmia detection are analyzed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 8th International Conference on Applications of Digital Information and Web Technologies
ISBN
978-1-61499-772-6
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
219-231
Název nakladatele
IOS Press BV
Místo vydání
Amsterdam
Místo konání akce
Juarez City
Datum konání akce
29. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000440621900020