Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00324420" target="_blank" >RIV/68407700:21220/18:00324420 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arc.aiaa.org/doi/abs/10.2514/6.2018-4435" target="_blank" >https://arc.aiaa.org/doi/abs/10.2514/6.2018-4435</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2514/6.2018-4435" target="_blank" >10.2514/6.2018-4435</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries

  • Popis výsledku v původním jazyce

    In the never-ending search for higher engine performance, the optimization of the blade tip geometry provides an opportunity to control the tip leakage flow, mitigate the rotor mixing losses and manage the heat load distributions. This paper evaluates the options for the setup of numerical simulations suitable for CFD-based blade tip optimization and assesses the impact of the CFD methods on the computation accuracy with emphasis on rotor tip flow prediction. The numerical study is performed with the Numeca FINE/Turbo and FINE/Open commercial RANS solvers on a set of optimised blade tip geometries in a high-pressure gas turbine stage. The domain is meshed with either an unstructured or a multi-block structured grid in order to assess the influence of domain discretization methods on performance parameters quantification. The location of the high-pressure stage after the combustor poses increased demands on turbulence modelling due to the high inlet turbulence intensity. This work compares the performance of the one-equation Spalart-Allmaras (SA) and the two-equation k-ε and k-ω SST. Another section is dedicated to methods for modelling of stator-rotor interaction. Domain restriction to rotor-only is attractive for its low computational demands, but it does not allow to include the stator-rotor interaction effects. This method is compared against a full-stage setup, employing either the commonly used steady computation with mixing plane or the Non-Linear Harmonics method which allows to capture the unsteady blade-passing effects. The computations are validated by experimental data available from a large scale high-speed turbine facility, employing a rainbow rotor approach to allow the simultaneous aerothermal testing of multiple optimized blade tip geometries.

  • Název v anglickém jazyce

    Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries

  • Popis výsledku anglicky

    In the never-ending search for higher engine performance, the optimization of the blade tip geometry provides an opportunity to control the tip leakage flow, mitigate the rotor mixing losses and manage the heat load distributions. This paper evaluates the options for the setup of numerical simulations suitable for CFD-based blade tip optimization and assesses the impact of the CFD methods on the computation accuracy with emphasis on rotor tip flow prediction. The numerical study is performed with the Numeca FINE/Turbo and FINE/Open commercial RANS solvers on a set of optimised blade tip geometries in a high-pressure gas turbine stage. The domain is meshed with either an unstructured or a multi-block structured grid in order to assess the influence of domain discretization methods on performance parameters quantification. The location of the high-pressure stage after the combustor poses increased demands on turbulence modelling due to the high inlet turbulence intensity. This work compares the performance of the one-equation Spalart-Allmaras (SA) and the two-equation k-ε and k-ω SST. Another section is dedicated to methods for modelling of stator-rotor interaction. Domain restriction to rotor-only is attractive for its low computational demands, but it does not allow to include the stator-rotor interaction effects. This method is compared against a full-stage setup, employing either the commonly used steady computation with mixing plane or the Non-Linear Harmonics method which allows to capture the unsteady blade-passing effects. The computations are validated by experimental data available from a large scale high-speed turbine facility, employing a rainbow rotor approach to allow the simultaneous aerothermal testing of multiple optimized blade tip geometries.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20304 - Aerospace engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    AIAA Propulsion and Energy Forum 2018: Joint Propulsion Conference

  • ISBN

    978-1-62410-570-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    20

  • Strana od-do

  • Název nakladatele

    American Institute of Aeronautics and Astronautics

  • Místo vydání

    Reston

  • Místo konání akce

    Cincinnati, Ohio

  • Datum konání akce

    9. 7. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku