Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00324420" target="_blank" >RIV/68407700:21220/18:00324420 - isvavai.cz</a>
Výsledek na webu
<a href="https://arc.aiaa.org/doi/abs/10.2514/6.2018-4435" target="_blank" >https://arc.aiaa.org/doi/abs/10.2514/6.2018-4435</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2514/6.2018-4435" target="_blank" >10.2514/6.2018-4435</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
Popis výsledku v původním jazyce
In the never-ending search for higher engine performance, the optimization of the blade tip geometry provides an opportunity to control the tip leakage flow, mitigate the rotor mixing losses and manage the heat load distributions. This paper evaluates the options for the setup of numerical simulations suitable for CFD-based blade tip optimization and assesses the impact of the CFD methods on the computation accuracy with emphasis on rotor tip flow prediction. The numerical study is performed with the Numeca FINE/Turbo and FINE/Open commercial RANS solvers on a set of optimised blade tip geometries in a high-pressure gas turbine stage. The domain is meshed with either an unstructured or a multi-block structured grid in order to assess the influence of domain discretization methods on performance parameters quantification. The location of the high-pressure stage after the combustor poses increased demands on turbulence modelling due to the high inlet turbulence intensity. This work compares the performance of the one-equation Spalart-Allmaras (SA) and the two-equation k-ε and k-ω SST. Another section is dedicated to methods for modelling of stator-rotor interaction. Domain restriction to rotor-only is attractive for its low computational demands, but it does not allow to include the stator-rotor interaction effects. This method is compared against a full-stage setup, employing either the commonly used steady computation with mixing plane or the Non-Linear Harmonics method which allows to capture the unsteady blade-passing effects. The computations are validated by experimental data available from a large scale high-speed turbine facility, employing a rainbow rotor approach to allow the simultaneous aerothermal testing of multiple optimized blade tip geometries.
Název v anglickém jazyce
Accuracy of RANS CFD Methods for Design Optimization of Turbine Blade Tip Geometries
Popis výsledku anglicky
In the never-ending search for higher engine performance, the optimization of the blade tip geometry provides an opportunity to control the tip leakage flow, mitigate the rotor mixing losses and manage the heat load distributions. This paper evaluates the options for the setup of numerical simulations suitable for CFD-based blade tip optimization and assesses the impact of the CFD methods on the computation accuracy with emphasis on rotor tip flow prediction. The numerical study is performed with the Numeca FINE/Turbo and FINE/Open commercial RANS solvers on a set of optimised blade tip geometries in a high-pressure gas turbine stage. The domain is meshed with either an unstructured or a multi-block structured grid in order to assess the influence of domain discretization methods on performance parameters quantification. The location of the high-pressure stage after the combustor poses increased demands on turbulence modelling due to the high inlet turbulence intensity. This work compares the performance of the one-equation Spalart-Allmaras (SA) and the two-equation k-ε and k-ω SST. Another section is dedicated to methods for modelling of stator-rotor interaction. Domain restriction to rotor-only is attractive for its low computational demands, but it does not allow to include the stator-rotor interaction effects. This method is compared against a full-stage setup, employing either the commonly used steady computation with mixing plane or the Non-Linear Harmonics method which allows to capture the unsteady blade-passing effects. The computations are validated by experimental data available from a large scale high-speed turbine facility, employing a rainbow rotor approach to allow the simultaneous aerothermal testing of multiple optimized blade tip geometries.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIAA Propulsion and Energy Forum 2018: Joint Propulsion Conference
ISBN
978-1-62410-570-8
ISSN
—
e-ISSN
—
Počet stran výsledku
20
Strana od-do
—
Název nakladatele
American Institute of Aeronautics and Astronautics
Místo vydání
Reston
Místo konání akce
Cincinnati, Ohio
Datum konání akce
9. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—