A Strategy of Mixture preparation for Methane Direct-Fired sCO2 Combustors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00328996" target="_blank" >RIV/68407700:21220/18:00328996 - isvavai.cz</a>
Výsledek na webu
<a href="http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2701549" target="_blank" >http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2701549</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/GT2018-75557" target="_blank" >10.1115/GT2018-75557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Strategy of Mixture preparation for Methane Direct-Fired sCO2 Combustors
Popis výsledku v původním jazyce
The reactor residence time required for a sCO(2) combustor is comparatively higher than an equal power, air-diluted conventional combustor. Therefore, the strategies to reduce the reactor residence time are very important in the design of sCO(2) combustors. The current work recommends a method to reduce the residence time requirement in the sCO(2) combustion chamber. Here, the combustor is modelled by coupling the perfectly-stirred-reactor (PSR) and plug-flow reactor (PFR) models along with the detailed Aramco 2.0 combustion chemical kinetic mechanism. The real gas effects are considered by using the Soave-Redlich-Kwong (SRK) equation of state incorporated in CHMEKIN-RG. Though, the CO emission level at the exit of the primary zone of the sCO(2) combustor is lower or in some cases equal to the conventional combustor, the further decline of CO in the dilution zone is identified as very poor. Therefore, very high CO levels can be expected at the exit of the sCO(2) combustor compared to conventional combustors. CO from the sCO(2) combustor exhaust can be eliminated by lean operation of the combustor and the excess O-2 retained in the re-cycled CO2 stream due to lean operation can be mixed with primary methane before entering the primary combustion zone. This strategy is shown to reduce the primary zone residence time requirement of sCO(2) combustion. However, the minimum level of O-2 in the re-cycled CO2 stream is approximately 5000 ppm and the minimum required residence time in this pre-mixing chamber is around 4 ms. Also, it is observed that the primary zone residence time requirement decreases linearly with respect to the O-2 level in the re-cycled CO2 stream.
Název v anglickém jazyce
A Strategy of Mixture preparation for Methane Direct-Fired sCO2 Combustors
Popis výsledku anglicky
The reactor residence time required for a sCO(2) combustor is comparatively higher than an equal power, air-diluted conventional combustor. Therefore, the strategies to reduce the reactor residence time are very important in the design of sCO(2) combustors. The current work recommends a method to reduce the residence time requirement in the sCO(2) combustion chamber. Here, the combustor is modelled by coupling the perfectly-stirred-reactor (PSR) and plug-flow reactor (PFR) models along with the detailed Aramco 2.0 combustion chemical kinetic mechanism. The real gas effects are considered by using the Soave-Redlich-Kwong (SRK) equation of state incorporated in CHMEKIN-RG. Though, the CO emission level at the exit of the primary zone of the sCO(2) combustor is lower or in some cases equal to the conventional combustor, the further decline of CO in the dilution zone is identified as very poor. Therefore, very high CO levels can be expected at the exit of the sCO(2) combustor compared to conventional combustors. CO from the sCO(2) combustor exhaust can be eliminated by lean operation of the combustor and the excess O-2 retained in the re-cycled CO2 stream due to lean operation can be mixed with primary methane before entering the primary combustion zone. This strategy is shown to reduce the primary zone residence time requirement of sCO(2) combustion. However, the minimum level of O-2 in the re-cycled CO2 stream is approximately 5000 ppm and the minimum required residence time in this pre-mixing chamber is around 4 ms. Also, it is observed that the primary zone residence time requirement decreases linearly with respect to the O-2 level in the re-cycled CO2 stream.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
ISBN
978-0-7918-5118-0
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
—
Název nakladatele
American Society of Mechanical Engineers - ASME
Místo vydání
New York
Místo konání akce
Lillestrom
Datum konání akce
11. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000457071300039