Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00328998" target="_blank" >RIV/68407700:21220/18:00328998 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1115/1.4039746" target="_blank" >http://dx.doi.org/10.1115/1.4039746</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4039746" target="_blank" >10.1115/1.4039746</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
Popis výsledku v původním jazyce
Reduced mechanisms are needed for use with computational fluid dynamic codes (CFD) utilized in the design of combustors. Typically, reduced mechanisms are created from a detailed mechanism, which contain numerous species and reactions that are computationally difficult to handle using most CFD codes. Recently, it has been shown that the detailed ARAMCO 2.0 mechanism well predicted the available experimental data at high pressures and in highly CO2 diluted methane mixtures. Here, a 23-species gas-phase mechanism is derived from the detailed ARAmco 2.0 mechanism by path-flux-analysis method (PFA) by using CHEM-RC. It is identified that the reaction CH4 + HO2 double left right arrow CH3 + H(2)O(2 )is very crucial in predicting the ignition delay times (IDTs) under current conditions. Further, it is inferred that species C2H3 and CH3OH are very important in predicting IDTs of lean sCO(2) methane mixtures. Also, the 23-species mechanism presented in this work is able to perform on par with the detailed ARAMCO 2.0 mechanism in terms of simulating IDTs, perfectly stirred-reactor (PSR) estimates under various CO2 dilutions and equivalence ratios, and prediction of turbulence chemistry interactions. It is observed that the choice of equation of state has no significant impact on the IDTs of supercritical CH4/O-2/CO2 mixtures but it influences supercritical H-2/O-2/CO2 mixtures considered in this work.
Název v anglickém jazyce
Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations
Popis výsledku anglicky
Reduced mechanisms are needed for use with computational fluid dynamic codes (CFD) utilized in the design of combustors. Typically, reduced mechanisms are created from a detailed mechanism, which contain numerous species and reactions that are computationally difficult to handle using most CFD codes. Recently, it has been shown that the detailed ARAMCO 2.0 mechanism well predicted the available experimental data at high pressures and in highly CO2 diluted methane mixtures. Here, a 23-species gas-phase mechanism is derived from the detailed ARAmco 2.0 mechanism by path-flux-analysis method (PFA) by using CHEM-RC. It is identified that the reaction CH4 + HO2 double left right arrow CH3 + H(2)O(2 )is very crucial in predicting the ignition delay times (IDTs) under current conditions. Further, it is inferred that species C2H3 and CH3OH are very important in predicting IDTs of lean sCO(2) methane mixtures. Also, the 23-species mechanism presented in this work is able to perform on par with the detailed ARAMCO 2.0 mechanism in terms of simulating IDTs, perfectly stirred-reactor (PSR) estimates under various CO2 dilutions and equivalence ratios, and prediction of turbulence chemistry interactions. It is observed that the choice of equation of state has no significant impact on the IDTs of supercritical CH4/O-2/CO2 mixtures but it influences supercritical H-2/O-2/CO2 mixtures considered in this work.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Resources Technology
ISSN
0195-0738
e-ISSN
—
Svazek periodika
140
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000447272200007
EID výsledku v databázi Scopus
2-s2.0-85051429985