Lnu-fuzzy network as a mathematical adaptive model of a hydraulic system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00364852" target="_blank" >RIV/68407700:21220/18:00364852 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17973/MMSJ.2018_11_201856" target="_blank" >https://doi.org/10.17973/MMSJ.2018_11_201856</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2018_11_201856" target="_blank" >10.17973/MMSJ.2018_11_201856</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lnu-fuzzy network as a mathematical adaptive model of a hydraulic system
Popis výsledku v původním jazyce
Model adaptive controllers such as Model Predictive Control or Model Reference Adaptive Control need a precise mathematical model of the controlled system adaptable in real-time. Systems consisting of a hydraulic 4- way proportional valve and a linear motor have non-linear behaviour such as hysteresis of and valve, death zone of a valve spool, time delay of a data transfer and control unit, dependence on coils temperature and oil temperature and nonlinear flow characteristics. This paper introduces modified Neuro-Fuzzy network as a mathematical adaptive model of a hydraulic system with above mentioned properties. The paper presents the basic architecture of Neuro-Fuzzy network which consists of artificial neural units a fuzzy layer and introduces modifications focused on identification. The basic real-time learning method such as Normalized Gradient Descent is introduced specially for the designed Neuro-Fuzzy Network. Identification and real time learning abilities of the model were tested on the hydraulic stand.
Název v anglickém jazyce
Lnu-fuzzy network as a mathematical adaptive model of a hydraulic system
Popis výsledku anglicky
Model adaptive controllers such as Model Predictive Control or Model Reference Adaptive Control need a precise mathematical model of the controlled system adaptable in real-time. Systems consisting of a hydraulic 4- way proportional valve and a linear motor have non-linear behaviour such as hysteresis of and valve, death zone of a valve spool, time delay of a data transfer and control unit, dependence on coils temperature and oil temperature and nonlinear flow characteristics. This paper introduces modified Neuro-Fuzzy network as a mathematical adaptive model of a hydraulic system with above mentioned properties. The paper presents the basic architecture of Neuro-Fuzzy network which consists of artificial neural units a fuzzy layer and introduces modifications focused on identification. The basic real-time learning method such as Normalized Gradient Descent is introduced specially for the designed Neuro-Fuzzy Network. Identification and real time learning abilities of the model were tested on the hydraulic stand.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
2018
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
4
Strana od-do
2573-2576
Kód UT WoS článku
000532566800016
EID výsledku v databázi Scopus
2-s2.0-85057331148