Effects of high-pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process conditions in turning of alloy 718
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00338775" target="_blank" >RIV/68407700:21220/19:00338775 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.wear.2019.05.037" target="_blank" >https://doi.org/10.1016/j.wear.2019.05.037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wear.2019.05.037" target="_blank" >10.1016/j.wear.2019.05.037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of high-pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process conditions in turning of alloy 718
Popis výsledku v původním jazyce
The exceptional properties of Heat Resistant Super Alloys (HRSA) justify the search for advanced technologies that can improve the capability of machining these materials. One such advanced technology is the application of a coolant at high pressure while machining. The aim is to achieve extended tool life, better chip control and improved surface finish. Another aim is to control the temperature in the workpiece/tool interface targeting for optimum cutting conditions. In most of the existing applications with high-pressure coolant media, the nozzles are positioned on the rake face side of the insert and they are directed towards the cutting edge (the high-temperature area). The coolant is applied at high-pressure to improve the penetration of the cooling media along the cutting edge in the interface between the insert and workpiece material (chip) as well as to increase chip breakability. However, the corresponding infusion of coolant media in the interface between the flank face of the insert and the work material has been previously only scarcely addressed, as is the combined effect of coolant applications on rake and clearance sides of the insert. The present work addresses the influence of different pressure conditions in (flank: 0, 4 and 8 MPa; rake: 8 and 16 MPa) on maximum flank wear, flank wear area, tool wear mechanism, and overall process performance. Round uncoated inserts are used in a set of face turning experiments, conducted on the widely used HRSA “Alloy 718” and run in two condition tests with respect to cutting speed (45 and 90 m/min). The results show that an increase in rake pressure from 8 to 16 MPa has certainly a positive impact on tool life. Furthermore, at higher vc of 90 m/min, cutting edge deterioration: due to an extensive abrasion and crack in the wear zone were the dominant wear mechanism. Nevertheless, the increase in coolant pressure condition to 16 MPa reduced the amount of abrasion on the tool compared to 8 MPa.
Název v anglickém jazyce
Effects of high-pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process conditions in turning of alloy 718
Popis výsledku anglicky
The exceptional properties of Heat Resistant Super Alloys (HRSA) justify the search for advanced technologies that can improve the capability of machining these materials. One such advanced technology is the application of a coolant at high pressure while machining. The aim is to achieve extended tool life, better chip control and improved surface finish. Another aim is to control the temperature in the workpiece/tool interface targeting for optimum cutting conditions. In most of the existing applications with high-pressure coolant media, the nozzles are positioned on the rake face side of the insert and they are directed towards the cutting edge (the high-temperature area). The coolant is applied at high-pressure to improve the penetration of the cooling media along the cutting edge in the interface between the insert and workpiece material (chip) as well as to increase chip breakability. However, the corresponding infusion of coolant media in the interface between the flank face of the insert and the work material has been previously only scarcely addressed, as is the combined effect of coolant applications on rake and clearance sides of the insert. The present work addresses the influence of different pressure conditions in (flank: 0, 4 and 8 MPa; rake: 8 and 16 MPa) on maximum flank wear, flank wear area, tool wear mechanism, and overall process performance. Round uncoated inserts are used in a set of face turning experiments, conducted on the widely used HRSA “Alloy 718” and run in two condition tests with respect to cutting speed (45 and 90 m/min). The results show that an increase in rake pressure from 8 to 16 MPa has certainly a positive impact on tool life. Furthermore, at higher vc of 90 m/min, cutting edge deterioration: due to an extensive abrasion and crack in the wear zone were the dominant wear mechanism. Nevertheless, the increase in coolant pressure condition to 16 MPa reduced the amount of abrasion on the tool compared to 8 MPa.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wear
ISSN
0043-1648
e-ISSN
1873-2577
Svazek periodika
434
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000487194500001
EID výsledku v databázi Scopus
2-s2.0-85070612386