SIMULATION OF CROSSFLOWS IN A MIXED CORE OF VVER REACTOR WITH SUBCHANNEL CODE AND CFD CODE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00338806" target="_blank" >RIV/68407700:21220/19:00338806 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SIMULATION OF CROSSFLOWS IN A MIXED CORE OF VVER REACTOR WITH SUBCHANNEL CODE AND CFD CODE
Popis výsledku v původním jazyce
The goal of this work was to evaluate crossflows in a mixed core of VVER reactor. The mixed core consists of old and new fuel assemblies with different geometry. These fuel assemblies have different spacer grids and mixing grids at different elevations. The old and new fuel assemblies also have slightly different total pressure loss. This causes crossflows between neighboring fuel assemblies. Crossflows were evaluated with VIPRE-01 subchannel code and with Ansys Fluent CFD code. In both codes, the computational domain covers an interface among fuel assemblies of different type along the whole core height. VIPRE-01 domain is modeled pin-by-pin and it includes corner plates. Spacer and mixing grids are represented by local pressure losses. CFD model has a much finer grid resolution. Spacer and mixing grids are modeled by thin walls and porous zones. Due to the enormous size and complexity of the CFD domain, the mixing vanes were not modeled. Transverse coolant velocities along the core height were calculated in both codes and compared. The results obtained with subchannel code are in a quite good agreement with results from CFD simulation.
Název v anglickém jazyce
SIMULATION OF CROSSFLOWS IN A MIXED CORE OF VVER REACTOR WITH SUBCHANNEL CODE AND CFD CODE
Popis výsledku anglicky
The goal of this work was to evaluate crossflows in a mixed core of VVER reactor. The mixed core consists of old and new fuel assemblies with different geometry. These fuel assemblies have different spacer grids and mixing grids at different elevations. The old and new fuel assemblies also have slightly different total pressure loss. This causes crossflows between neighboring fuel assemblies. Crossflows were evaluated with VIPRE-01 subchannel code and with Ansys Fluent CFD code. In both codes, the computational domain covers an interface among fuel assemblies of different type along the whole core height. VIPRE-01 domain is modeled pin-by-pin and it includes corner plates. Spacer and mixing grids are represented by local pressure losses. CFD model has a much finer grid resolution. Spacer and mixing grids are modeled by thin walls and porous zones. Due to the enormous size and complexity of the CFD domain, the mixing vanes were not modeled. Transverse coolant velocities along the core height were calculated in both codes and compared. The results obtained with subchannel code are in a quite good agreement with results from CFD simulation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 29th Symposium of AER on VVER Reactor Physics and Reactor Safety
ISBN
978-963-7351-32-7
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
—
Název nakladatele
Atomic Energy Research
Místo vydání
Budapest
Místo konání akce
Mochovce
Datum konání akce
14. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—