STRATEGY OF MILLING CENTER THERMAL ERROR COMPENSATION USING A TRANSFER FUNCTION MODEL AND ITS VALIDATION OUTSIDE OF CALIBRATION RANGE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F19%3A00339591" target="_blank" >RIV/68407700:21220/19:00339591 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17973/MMSJ.2019_11_2019065" target="_blank" >https://doi.org/10.17973/MMSJ.2019_11_2019065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2019_11_2019065" target="_blank" >10.17973/MMSJ.2019_11_2019065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
STRATEGY OF MILLING CENTER THERMAL ERROR COMPENSATION USING A TRANSFER FUNCTION MODEL AND ITS VALIDATION OUTSIDE OF CALIBRATION RANGE
Popis výsledku v původním jazyce
Achieving high workpiece accuracy is a long-term goal of machine tool designers. There are many causes of workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising strategy to reduce thermal errors without increasing machine tool costs. A modelling approach using thermal transfer functions (a dynamic method with a physical basis) has the potential to deal with the issue. The method does not require any intervention into the machine tool structure and its modelling and calculation speed are suitable for real-time applications with results of up to 80% thermal error reduction. Compensation models for machine tool thermal errors based on transfer functions (TFs) were successfully applied on various kinds of single-purpose machines (milling, turning, floor-type, etc.) and implemented directly into various control systems. The aim of this research is to prove the compensation model applicability within the real machining conditions whereas the most of known thermal errors models end up with offline verification of their approximation quality. The introduced model of a milling centre operates in two machining directions Y and Z and describes thermal errors caused by spindle speed, feed drives and ambient temperature influences. The model is implemented into machine tool control system (Fanuc FS31i-B5). The real-time verification upon finishing cutting operation and conditions different from model calibration is discussed in more detail.
Název v anglickém jazyce
STRATEGY OF MILLING CENTER THERMAL ERROR COMPENSATION USING A TRANSFER FUNCTION MODEL AND ITS VALIDATION OUTSIDE OF CALIBRATION RANGE
Popis výsledku anglicky
Achieving high workpiece accuracy is a long-term goal of machine tool designers. There are many causes of workpiece inaccuracy, with thermal errors being the most dominant. Indirect compensation (using predictive models) is a promising strategy to reduce thermal errors without increasing machine tool costs. A modelling approach using thermal transfer functions (a dynamic method with a physical basis) has the potential to deal with the issue. The method does not require any intervention into the machine tool structure and its modelling and calculation speed are suitable for real-time applications with results of up to 80% thermal error reduction. Compensation models for machine tool thermal errors based on transfer functions (TFs) were successfully applied on various kinds of single-purpose machines (milling, turning, floor-type, etc.) and implemented directly into various control systems. The aim of this research is to prove the compensation model applicability within the real machining conditions whereas the most of known thermal errors models end up with offline verification of their approximation quality. The introduced model of a milling centre operates in two machining directions Y and Z and describes thermal errors caused by spindle speed, feed drives and ambient temperature influences. The model is implemented into machine tool control system (Fanuc FS31i-B5). The real-time verification upon finishing cutting operation and conditions different from model calibration is discussed in more detail.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
3156-3163
Kód UT WoS článku
000532569400022
EID výsledku v databázi Scopus
2-s2.0-85074985343