Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00341767" target="_blank" >RIV/68407700:21220/20:00341767 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/10467/89305" target="_blank" >http://hdl.handle.net/10467/89305</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.precisioneng.2020.06.010" target="_blank" >10.1016/j.precisioneng.2020.06.010</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece

  • Popis výsledku v původním jazyce

    Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 hours. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool’s multiple linear regression compensation model are discussed.

  • Název v anglickém jazyce

    Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece

  • Popis výsledku anglicky

    Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 hours. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool’s multiple linear regression compensation model are discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Strojírenská výrobní technika a přesné strojírenství</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Precision Engineering

  • ISSN

    0141-6359

  • e-ISSN

    1873-2372

  • Svazek periodika

    66

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    21-30

  • Kód UT WoS článku

    000583295900003

  • EID výsledku v databázi Scopus

    2-s2.0-85087938331