Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00341767" target="_blank" >RIV/68407700:21220/20:00341767 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/10467/89305" target="_blank" >http://hdl.handle.net/10467/89305</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.precisioneng.2020.06.010" target="_blank" >10.1016/j.precisioneng.2020.06.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
Popis výsledku v původním jazyce
Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 hours. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool’s multiple linear regression compensation model are discussed.
Název v anglickém jazyce
Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece
Popis výsledku anglicky
Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 hours. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool’s multiple linear regression compensation model are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Strojírenská výrobní technika a přesné strojírenství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Precision Engineering
ISSN
0141-6359
e-ISSN
1873-2372
Svazek periodika
66
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
21-30
Kód UT WoS článku
000583295900003
EID výsledku v databázi Scopus
2-s2.0-85087938331