Identification of structures and mechanisms in a flow field by POD analysis for input data obtained from visualization and PIV
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00342123" target="_blank" >RIV/68407700:21220/20:00342123 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00348-020-03005-6" target="_blank" >https://doi.org/10.1007/s00348-020-03005-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00348-020-03005-6" target="_blank" >10.1007/s00348-020-03005-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of structures and mechanisms in a flow field by POD analysis for input data obtained from visualization and PIV
Popis výsledku v původním jazyce
This paper investigates the application of proper orthogonal decomposition (POD) for data obtained from visualizations. Using the POD method, the flow field behind one and two cylinders in a staggered configuration was analyzed. The data processed by this method were obtained from experimental measurements of flow fields using the particle image velocimetry (PIV) method and visualization. The dominant frequencies of the flow pattern from these data were compared using constant temperature anemometry (CTA) measurements. Attention was mainly focused on the flow at three Reynolds numbers: 500, 1200, and 2500. Velocity and vortex fields were created from PIV measurements in the wind tunnel forRe = 500, and video images of flow fields were obtained from dye visualizations in the hydrodynamic tunnel. The components of velocity, vorticity (both of PIV), and change in grayscale (from visualization) were used as input data for POD analysis. A methodology for data processing from visualizations was developed for subsequent analysis using the POD method. A new technique has been found to identify structures in the wake of the cylinders in a staggered configuration by analyzing POD based on various types of input data. The measured fields of dominant frequencies from the CTA and a thorough analysis of the POD modes and their relative energy values for each type of data made it possible to identify the structures and mechanisms that occur in the wake of cylinders. This analysis facilitated a better understanding of the importance of these structures and mechanisms, which can then be used to control the flow behind the cylinders.
Název v anglickém jazyce
Identification of structures and mechanisms in a flow field by POD analysis for input data obtained from visualization and PIV
Popis výsledku anglicky
This paper investigates the application of proper orthogonal decomposition (POD) for data obtained from visualizations. Using the POD method, the flow field behind one and two cylinders in a staggered configuration was analyzed. The data processed by this method were obtained from experimental measurements of flow fields using the particle image velocimetry (PIV) method and visualization. The dominant frequencies of the flow pattern from these data were compared using constant temperature anemometry (CTA) measurements. Attention was mainly focused on the flow at three Reynolds numbers: 500, 1200, and 2500. Velocity and vortex fields were created from PIV measurements in the wind tunnel forRe = 500, and video images of flow fields were obtained from dye visualizations in the hydrodynamic tunnel. The components of velocity, vorticity (both of PIV), and change in grayscale (from visualization) were used as input data for POD analysis. A methodology for data processing from visualizations was developed for subsequent analysis using the POD method. A new technique has been found to identify structures in the wake of the cylinders in a staggered configuration by analyzing POD based on various types of input data. The measured fields of dominant frequencies from the CTA and a thorough analysis of the POD modes and their relative energy values for each type of data made it possible to identify the structures and mechanisms that occur in the wake of cylinders. This analysis facilitated a better understanding of the importance of these structures and mechanisms, which can then be used to control the flow behind the cylinders.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERIMENTS IN FLUIDS
ISSN
0723-4864
e-ISSN
1432-1114
Svazek periodika
61
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000551986100001
EID výsledku v databázi Scopus
2-s2.0-85087819938