Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Learning Entropy of Adaptive Filters via Clustering Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00344466" target="_blank" >RIV/68407700:21220/20:00344466 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/SSPD47486.2020.9272138" target="_blank" >https://doi.org/10.1109/SSPD47486.2020.9272138</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SSPD47486.2020.9272138" target="_blank" >10.1109/SSPD47486.2020.9272138</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Learning Entropy of Adaptive Filters via Clustering Techniques

  • Popis výsledku v původním jazyce

    Learning Entropy (LE) was initially introduced as a measure for sample point novelty by unusually large learning effort of an online learning system. The key concept is that LE is based on pre-training and further online learning, and the novelty measure is not necessarily correlated to the prediction error. Most recently, the idea of LE was revised as a novel non-probabilistic, i.e., machine-learning-based information measure. This measure is high when a learning system is not familiar with a given data point, so the learning activity to learn novel data points is unusual (regardless of the prediction error), i.e., the learning increments display unusual patterns during adaptation. In this paper, we propose concepts of the learning state and the learning state space so that LE can be approximated via neighbourhood analysis in the learning space. Further, two novel clustering-based techniques for approximation of sample point LE are proposed. The first one is based on the sum of K nearest neighbour distances. The second one is based on multiscale neighbourhood cumulative sum. Also, we preprocess the learning space with dimensionality reduction that is promising for research of LE even with neural networks and potentially with deep neural networks. The performance of novelty detection with the clustering-based sample point LE with dimensionality reduction is compared to the original algorithms of LE, and its potentials are discussed.

  • Název v anglickém jazyce

    Learning Entropy of Adaptive Filters via Clustering Techniques

  • Popis výsledku anglicky

    Learning Entropy (LE) was initially introduced as a measure for sample point novelty by unusually large learning effort of an online learning system. The key concept is that LE is based on pre-training and further online learning, and the novelty measure is not necessarily correlated to the prediction error. Most recently, the idea of LE was revised as a novel non-probabilistic, i.e., machine-learning-based information measure. This measure is high when a learning system is not familiar with a given data point, so the learning activity to learn novel data points is unusual (regardless of the prediction error), i.e., the learning increments display unusual patterns during adaptation. In this paper, we propose concepts of the learning state and the learning state space so that LE can be approximated via neighbourhood analysis in the learning space. Further, two novel clustering-based techniques for approximation of sample point LE are proposed. The first one is based on the sum of K nearest neighbour distances. The second one is based on multiscale neighbourhood cumulative sum. Also, we preprocess the learning space with dimensionality reduction that is promising for research of LE even with neural networks and potentially with deep neural networks. The performance of novelty detection with the clustering-based sample point LE with dimensionality reduction is compared to the original algorithms of LE, and its potentials are discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2020 SENSOR SIGNAL PROCESSING FOR DEFENCE CONFERENCE (SSPD)

  • ISBN

    9781728138107

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

  • Název nakladatele

    IEEE Industrial Electronic Society

  • Místo vydání

    ???

  • Místo konání akce

    Edinburgh

  • Datum konání akce

    14. 12. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku