Curve reconstruction from a set of measured points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00349630" target="_blank" >RIV/68407700:21220/21:00349630 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21136/panm.2020.05" target="_blank" >https://doi.org/10.21136/panm.2020.05</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/panm.2020.05" target="_blank" >10.21136/panm.2020.05</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Curve reconstruction from a set of measured points
Popis výsledku v původním jazyce
A method of cubic spline curve fitting to a set of points passing at the prescribed distance from the input points obtained by measurement on acoordinate measuring machine is described. When reconstructing the shape of the measured object from the points obtained by real measurements, it is always necessary to consider the measurement uncertainty (tenths to tens of micrometers). This uncertainty is not zero, therefore interpolation methods where the resulting curve passes through the given points do not lead to acceptable results in practice. Also, conventional B-spline approximation methods cannot be used because, for real distances between the measured points (tenths to units of milimeters), the distance of the input data from the resulting approximation curve is much greater than the measurement uncertainty considered. The proposed reconstruction method allows to control the maximum distance of the resulting curve from the input data and thus to respect the uncertainty with which the input data was obtained.
Název v anglickém jazyce
Curve reconstruction from a set of measured points
Popis výsledku anglicky
A method of cubic spline curve fitting to a set of points passing at the prescribed distance from the input points obtained by measurement on acoordinate measuring machine is described. When reconstructing the shape of the measured object from the points obtained by real measurements, it is always necessary to consider the measurement uncertainty (tenths to tens of micrometers). This uncertainty is not zero, therefore interpolation methods where the resulting curve passes through the given points do not lead to acceptable results in practice. Also, conventional B-spline approximation methods cannot be used because, for real distances between the measured points (tenths to units of milimeters), the distance of the input data from the resulting approximation curve is much greater than the measurement uncertainty considered. The proposed reconstruction method allows to control the maximum distance of the resulting curve from the input data and thus to respect the uncertainty with which the input data was obtained.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PANM 20 Programs and Algorithms of Numerical Mathematics
ISBN
978-80-85823-71-4
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
50-58
Název nakladatele
Matematický ústav AV ČR, v. v. i.
Místo vydání
Praha
Místo konání akce
Hejnice
Datum konání akce
21. 6. 2020
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000672803500005