Tensor-based Polynomial Features Generation for High-order Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00353300" target="_blank" >RIV/68407700:21220/21:00353300 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/PC52310.2021.9447514" target="_blank" >https://doi.org/10.1109/PC52310.2021.9447514</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PC52310.2021.9447514" target="_blank" >10.1109/PC52310.2021.9447514</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tensor-based Polynomial Features Generation for High-order Neural Networks
Popis výsledku v původním jazyce
This paper discusses the methods and algorithms for polynomial features generation. The polynomial features generation is the very first step for the High-order Neural Units evaluation. The algorithms for polynomial features generation based on recursive calls are memory effective; however, these algorithms can not benefit from the modern hardware optimizations for neural networks focused on fast tensor operations on GPUs (Graphic Processing Units) and TPUs (Tensor Processing units). Moreover, the recursive calls with many operations are limiting for the application of automatic differentiation algorithms. That makes the design of a high order neural network with HONU in the later than the first hidden layer challenging. The tensor-based algorithm for polynomial features generation that tries to leverage TPU and GPU hardware architecture is introduced in this paper. The tensor-based algorithm's implementation is tested and compared with a straight-forward recursive algorithm and with SciKit-learn library implementation in Python programming language.
Název v anglickém jazyce
Tensor-based Polynomial Features Generation for High-order Neural Networks
Popis výsledku anglicky
This paper discusses the methods and algorithms for polynomial features generation. The polynomial features generation is the very first step for the High-order Neural Units evaluation. The algorithms for polynomial features generation based on recursive calls are memory effective; however, these algorithms can not benefit from the modern hardware optimizations for neural networks focused on fast tensor operations on GPUs (Graphic Processing Units) and TPUs (Tensor Processing units). Moreover, the recursive calls with many operations are limiting for the application of automatic differentiation algorithms. That makes the design of a high order neural network with HONU in the later than the first hidden layer challenging. The tensor-based algorithm for polynomial features generation that tries to leverage TPU and GPU hardware architecture is introduced in this paper. The tensor-based algorithm's implementation is tested and compared with a straight-forward recursive algorithm and with SciKit-learn library implementation in Python programming language.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 23rd International Conference on Process Control
ISBN
978-1-6654-0330-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
175-179
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Štrbské Pleso
Datum konání akce
1. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000723653400030