Achieving+95% Ammonia Purity by Optimizing the Absorption and Desorption Conditions of Supported Metal Halides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00355901" target="_blank" >RIV/68407700:21220/22:00355901 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1021/acssuschemeng.1c05668" target="_blank" >https://doi.org/10.1021/acssuschemeng.1c05668</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acssuschemeng.1c05668" target="_blank" >10.1021/acssuschemeng.1c05668</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Achieving+95% Ammonia Purity by Optimizing the Absorption and Desorption Conditions of Supported Metal Halides
Popis výsledku v původním jazyce
The worldwide push toward the reduction of carbon dioxide emissions has been the main motivation for finding a sustainable alternative to the conventional Haber-Bosch ammonia production process that has a significant carbon footprint. In this work, we focused on ammonia separation by replacing the condenser with an absorber column packed with metal halide solid absorbents. These salts had shown promise in selective separation of NH3 in the past, but more information on the cyclic operation and ammonia desorption conditions was needed. We used an automated apparatus equipped with an absorption column packed with either silica, supported CaCl2, or supported MgCl2 to explore the optimal absorption/ desorption conditions (pressure and temperature swings). Primarily, we are reporting on the working capacity of various sorbents for cyclic ammonia separation. Additionally, we investigated the effect of sweep gas on the desorption efficiency and compared the absorbent performance among each other in terms of absorption working capacity and the purity of the ammonia product stream. We were able to achieve an NH3 stream with a purity of over 95%; in some of the tests, we achieved a coordination number as high as 2.5 mol(NH3)/mol(salt), which is the highest ever reported for a dynamic flow breakthrough test. Our experiments further prove the significant potential that these salts possess to replace phase change condensation in the conventional ammonia synthesis-not only in a greener fashion but also more efficiently with a decreased equipment size, with reduced energy input in smaller scales, and with more flexibility to follow intermittent renewables.
Název v anglickém jazyce
Achieving+95% Ammonia Purity by Optimizing the Absorption and Desorption Conditions of Supported Metal Halides
Popis výsledku anglicky
The worldwide push toward the reduction of carbon dioxide emissions has been the main motivation for finding a sustainable alternative to the conventional Haber-Bosch ammonia production process that has a significant carbon footprint. In this work, we focused on ammonia separation by replacing the condenser with an absorber column packed with metal halide solid absorbents. These salts had shown promise in selective separation of NH3 in the past, but more information on the cyclic operation and ammonia desorption conditions was needed. We used an automated apparatus equipped with an absorption column packed with either silica, supported CaCl2, or supported MgCl2 to explore the optimal absorption/ desorption conditions (pressure and temperature swings). Primarily, we are reporting on the working capacity of various sorbents for cyclic ammonia separation. Additionally, we investigated the effect of sweep gas on the desorption efficiency and compared the absorbent performance among each other in terms of absorption working capacity and the purity of the ammonia product stream. We were able to achieve an NH3 stream with a purity of over 95%; in some of the tests, we achieved a coordination number as high as 2.5 mol(NH3)/mol(salt), which is the highest ever reported for a dynamic flow breakthrough test. Our experiments further prove the significant potential that these salts possess to replace phase change condensation in the conventional ammonia synthesis-not only in a greener fashion but also more efficiently with a decreased equipment size, with reduced energy input in smaller scales, and with more flexibility to follow intermittent renewables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Sustainable Chemistry & Engineering
ISSN
2168-0485
e-ISSN
2168-0485
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
204-212
Kód UT WoS článku
000734272000001
EID výsledku v databázi Scopus
2-s2.0-85121918824