Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical study on the convective heat transfer performance of a developed MXene IoNanofuid in a horizontal tube by considering temperature-dependent properties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00358564" target="_blank" >RIV/68407700:21220/22:00358564 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10973-022-11414-4" target="_blank" >https://doi.org/10.1007/s10973-022-11414-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10973-022-11414-4" target="_blank" >10.1007/s10973-022-11414-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical study on the convective heat transfer performance of a developed MXene IoNanofuid in a horizontal tube by considering temperature-dependent properties

  • Popis výsledku v původním jazyce

    In this study, the heat transfer performance of [MMI][DMP] ionic liquid solution (20 vol% IL+80 vol% deionized water) in the presence of Mxene nanoparticle is investigated based on computational fluid dynamics numerical method considering temperature-dependent properties. It should be noted that the thermophysical properties of IoNanofluid were experimentally measured in our previous published study. The modeling results are validated with numerical and experimental works, and the validation results indicate good agreement between them. The effect of adding Mxene nanoparticle to the base liquid was carried out in a horizontal tube with 1–50 range of Reynolds number. The results found that the heat transfer coefficient increased by increasing the Reynolds number and also the nanofluids’ concentration. Moreover, it raises by increasing the fluid inlet temperature while the Nu number decreases. This is because the Nusselt number is in a reverse relationship with the heat transfer coefficient. The maximum heat transfer coefficient observed for 0.2 mass% INf at 308 K fluid inlet temperature and Reynolds number of 50 was 2207.83 W m2 K-1. However, the maximum Nusselt number detected for pure base fluid at 298.15 K fluid inlet temperature and Reynolds number of 50 was 13.22. Furthermore, the maximum heat transfer enhancement was observed for 0.2 mass% INf at Reynolds number of 50 and 308.15 K fluid inlet temperature (43.6%). Finally, a novel correlation is proposed to estimate the Nusselt number of nanofluids with R2=0.992 and AREP=2.8%.

  • Název v anglickém jazyce

    Numerical study on the convective heat transfer performance of a developed MXene IoNanofuid in a horizontal tube by considering temperature-dependent properties

  • Popis výsledku anglicky

    In this study, the heat transfer performance of [MMI][DMP] ionic liquid solution (20 vol% IL+80 vol% deionized water) in the presence of Mxene nanoparticle is investigated based on computational fluid dynamics numerical method considering temperature-dependent properties. It should be noted that the thermophysical properties of IoNanofluid were experimentally measured in our previous published study. The modeling results are validated with numerical and experimental works, and the validation results indicate good agreement between them. The effect of adding Mxene nanoparticle to the base liquid was carried out in a horizontal tube with 1–50 range of Reynolds number. The results found that the heat transfer coefficient increased by increasing the Reynolds number and also the nanofluids’ concentration. Moreover, it raises by increasing the fluid inlet temperature while the Nu number decreases. This is because the Nusselt number is in a reverse relationship with the heat transfer coefficient. The maximum heat transfer coefficient observed for 0.2 mass% INf at 308 K fluid inlet temperature and Reynolds number of 50 was 2207.83 W m2 K-1. However, the maximum Nusselt number detected for pure base fluid at 298.15 K fluid inlet temperature and Reynolds number of 50 was 13.22. Furthermore, the maximum heat transfer enhancement was observed for 0.2 mass% INf at Reynolds number of 50 and 308.15 K fluid inlet temperature (43.6%). Finally, a novel correlation is proposed to estimate the Nusselt number of nanofluids with R2=0.992 and AREP=2.8%.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Thermal Analysis and Calorimetry

  • ISSN

    1388-6150

  • e-ISSN

    1588-2926

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    06

  • Stát vydavatele periodika

    HU - Maďarsko

  • Počet stran výsledku

    12

  • Strana od-do

    12067-12078

  • Kód UT WoS článku

    000817006300002

  • EID výsledku v databázi Scopus

    2-s2.0-85132949324