Numerical study on the convective heat transfer performance of a developed MXene IoNanofuid in a horizontal tube by considering temperature-dependent properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00358564" target="_blank" >RIV/68407700:21220/22:00358564 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10973-022-11414-4" target="_blank" >https://doi.org/10.1007/s10973-022-11414-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10973-022-11414-4" target="_blank" >10.1007/s10973-022-11414-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical study on the convective heat transfer performance of a developed MXene IoNanofuid in a horizontal tube by considering temperature-dependent properties
Popis výsledku v původním jazyce
In this study, the heat transfer performance of [MMI][DMP] ionic liquid solution (20 vol% IL+80 vol% deionized water) in the presence of Mxene nanoparticle is investigated based on computational fluid dynamics numerical method considering temperature-dependent properties. It should be noted that the thermophysical properties of IoNanofluid were experimentally measured in our previous published study. The modeling results are validated with numerical and experimental works, and the validation results indicate good agreement between them. The effect of adding Mxene nanoparticle to the base liquid was carried out in a horizontal tube with 1–50 range of Reynolds number. The results found that the heat transfer coefficient increased by increasing the Reynolds number and also the nanofluids’ concentration. Moreover, it raises by increasing the fluid inlet temperature while the Nu number decreases. This is because the Nusselt number is in a reverse relationship with the heat transfer coefficient. The maximum heat transfer coefficient observed for 0.2 mass% INf at 308 K fluid inlet temperature and Reynolds number of 50 was 2207.83 W m2 K-1. However, the maximum Nusselt number detected for pure base fluid at 298.15 K fluid inlet temperature and Reynolds number of 50 was 13.22. Furthermore, the maximum heat transfer enhancement was observed for 0.2 mass% INf at Reynolds number of 50 and 308.15 K fluid inlet temperature (43.6%). Finally, a novel correlation is proposed to estimate the Nusselt number of nanofluids with R2=0.992 and AREP=2.8%.
Název v anglickém jazyce
Numerical study on the convective heat transfer performance of a developed MXene IoNanofuid in a horizontal tube by considering temperature-dependent properties
Popis výsledku anglicky
In this study, the heat transfer performance of [MMI][DMP] ionic liquid solution (20 vol% IL+80 vol% deionized water) in the presence of Mxene nanoparticle is investigated based on computational fluid dynamics numerical method considering temperature-dependent properties. It should be noted that the thermophysical properties of IoNanofluid were experimentally measured in our previous published study. The modeling results are validated with numerical and experimental works, and the validation results indicate good agreement between them. The effect of adding Mxene nanoparticle to the base liquid was carried out in a horizontal tube with 1–50 range of Reynolds number. The results found that the heat transfer coefficient increased by increasing the Reynolds number and also the nanofluids’ concentration. Moreover, it raises by increasing the fluid inlet temperature while the Nu number decreases. This is because the Nusselt number is in a reverse relationship with the heat transfer coefficient. The maximum heat transfer coefficient observed for 0.2 mass% INf at 308 K fluid inlet temperature and Reynolds number of 50 was 2207.83 W m2 K-1. However, the maximum Nusselt number detected for pure base fluid at 298.15 K fluid inlet temperature and Reynolds number of 50 was 13.22. Furthermore, the maximum heat transfer enhancement was observed for 0.2 mass% INf at Reynolds number of 50 and 308.15 K fluid inlet temperature (43.6%). Finally, a novel correlation is proposed to estimate the Nusselt number of nanofluids with R2=0.992 and AREP=2.8%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Thermal Analysis and Calorimetry
ISSN
1388-6150
e-ISSN
1588-2926
Svazek periodika
2022
Číslo periodika v rámci svazku
06
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
12
Strana od-do
12067-12078
Kód UT WoS článku
000817006300002
EID výsledku v databázi Scopus
2-s2.0-85132949324