Dynamic Mode Decompositions of Phonation Onset – Comparison of Different Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00361646" target="_blank" >RIV/68407700:21220/22:00361646 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/TPFM.2022.024" target="_blank" >https://doi.org/10.14311/TPFM.2022.024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2022.024" target="_blank" >10.14311/TPFM.2022.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Mode Decompositions of Phonation Onset – Comparison of Different Methods
Popis výsledku v původním jazyce
Four dynamic mode decomposition (DMD) methods are used to analyze a simulation of the phonation onset carried out by in-house solver based on the finite element method. The dataset consists of several last periods of the flow-induced vibrations of vocal folds (VFs). The DMD is a data-driven and model-free method typically used for finding a low-rank representation of a high-dimensional system. In general, the DMD decomposes a given dataset to modes with mono-frequency content and associated complex eigenvalues providing the growth/decay rate that allows a favourable physical interpretation and in some cases also a short-term prediction of system behaviour. The disadvantages of the standard DMD are non- orthogonal modes and sensitivity to an increased noise level which are addressed by following DMD variants. The recursive DMD (rDMD) is an iterative DMD decomposition producing orthogonal modes. The total least-square DMD and the higher order DMD (hoDMD) are methods substantially reducing a high DMD sensitivity to noise. All methods identified very similar DMD modes as well as frequency spectra. Substantial difference was found in the real part of the spectra. The final dataset reconstruction is the most accurate in the case of the recursive variant. The higher order DMD method also outperforms the standard DMD. Thus the rDMD and the hoDMD decompositions are promising to be used further for the parametrization of a VF motion.
Název v anglickém jazyce
Dynamic Mode Decompositions of Phonation Onset – Comparison of Different Methods
Popis výsledku anglicky
Four dynamic mode decomposition (DMD) methods are used to analyze a simulation of the phonation onset carried out by in-house solver based on the finite element method. The dataset consists of several last periods of the flow-induced vibrations of vocal folds (VFs). The DMD is a data-driven and model-free method typically used for finding a low-rank representation of a high-dimensional system. In general, the DMD decomposes a given dataset to modes with mono-frequency content and associated complex eigenvalues providing the growth/decay rate that allows a favourable physical interpretation and in some cases also a short-term prediction of system behaviour. The disadvantages of the standard DMD are non- orthogonal modes and sensitivity to an increased noise level which are addressed by following DMD variants. The recursive DMD (rDMD) is an iterative DMD decomposition producing orthogonal modes. The total least-square DMD and the higher order DMD (hoDMD) are methods substantially reducing a high DMD sensitivity to noise. All methods identified very similar DMD modes as well as frequency spectra. Substantial difference was found in the real part of the spectra. The final dataset reconstruction is the most accurate in the case of the recursive variant. The higher order DMD method also outperforms the standard DMD. Thus the rDMD and the hoDMD decompositions are promising to be used further for the parametrization of a VF motion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Centrum pokročilých aplikovaných přírodních věd</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Topical Problems of Fluid Mechanics 2022
ISBN
978-80-87012-77-2
ISSN
2336-5781
e-ISSN
—
Počet stran výsledku
9
Strana od-do
181-189
Název nakladatele
Ústav termomechaniky AV ČR, v. v. i.
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
16. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—