An analytical formulation of ZOA-based machining stability for complex tool geometries: application to 5-axis ball-end milling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00361698" target="_blank" >RIV/68407700:21220/22:00361698 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00170-022-10170-x" target="_blank" >https://doi.org/10.1007/s00170-022-10170-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00170-022-10170-x" target="_blank" >10.1007/s00170-022-10170-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An analytical formulation of ZOA-based machining stability for complex tool geometries: application to 5-axis ball-end milling
Popis výsledku v původním jazyce
The paper describes a computationally convenient analytical formulation of the stability of the cutting process with respect to self-excited vibrations in the case of five-axis milling based on the commonly used zero-order approximation. In the case of five-axis milling with general milling cutters, it is difficult to calculate stable machining process conditions for two main reasons. The first reason is the difficulty of calculating the mean value of the cutting force Jacobian with respect to the regenerative displacement (closely related to a milling directional matrix) for a generally inclined tool, and the second reason is the nonlinearity of this Jacobian with respect to the process parameters, which means that the problem cannot be reduced to a linear eigenvalue problem as is usual for linear cases (e.g. cylindrical milling with respect to the axial depth of cut). In the first part, this paper presents a modification of the calculation of the machining stability limits for a nonlinearly dependent cutting force Jacobian. A new formulation of this Jacobian for a general tool based on the surface integral over the tool and workpiece engagement region is presented which leads directly to the mean value of the Jacobian of the cutting force (direction matrix) without the need to calculate it as a function of time and then calculate the mean value over one revolution. The advantage is that if we can analytically describe the engagement area, we also obtain an analytical relation for the cutting force Jacobian. This is presented with the practical example of a generally inclined ball-end mill. This analytical formulation of the force Jacobian allows the calculation of its derivatives with respect to the technological parameters (depth of cut, step over, tilt and lead angles), which is useful both for the calculation of stability diagrams and for solving optimization problems related to machining stability.
Název v anglickém jazyce
An analytical formulation of ZOA-based machining stability for complex tool geometries: application to 5-axis ball-end milling
Popis výsledku anglicky
The paper describes a computationally convenient analytical formulation of the stability of the cutting process with respect to self-excited vibrations in the case of five-axis milling based on the commonly used zero-order approximation. In the case of five-axis milling with general milling cutters, it is difficult to calculate stable machining process conditions for two main reasons. The first reason is the difficulty of calculating the mean value of the cutting force Jacobian with respect to the regenerative displacement (closely related to a milling directional matrix) for a generally inclined tool, and the second reason is the nonlinearity of this Jacobian with respect to the process parameters, which means that the problem cannot be reduced to a linear eigenvalue problem as is usual for linear cases (e.g. cylindrical milling with respect to the axial depth of cut). In the first part, this paper presents a modification of the calculation of the machining stability limits for a nonlinearly dependent cutting force Jacobian. A new formulation of this Jacobian for a general tool based on the surface integral over the tool and workpiece engagement region is presented which leads directly to the mean value of the Jacobian of the cutting force (direction matrix) without the need to calculate it as a function of time and then calculate the mean value over one revolution. The advantage is that if we can analytically describe the engagement area, we also obtain an analytical relation for the cutting force Jacobian. This is presented with the practical example of a generally inclined ball-end mill. This analytical formulation of the force Jacobian allows the calculation of its derivatives with respect to the technological parameters (depth of cut, step over, tilt and lead angles), which is useful both for the calculation of stability diagrams and for solving optimization problems related to machining stability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The International Journal of Advanced Manufacturing Technology
ISSN
0268-3768
e-ISSN
1433-3015
Svazek periodika
123
Číslo periodika v rámci svazku
5-6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
1499-1519
Kód UT WoS článku
000873988900001
EID výsledku v databázi Scopus
2-s2.0-85140265228