A Nonfield Analytical Method for Solving Some Nonlinear Problems in Heat Transfer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00362592" target="_blank" >RIV/68407700:21220/22:00362592 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1115/1.4055339" target="_blank" >https://doi.org/10.1115/1.4055339</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4055339" target="_blank" >10.1115/1.4055339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Nonfield Analytical Method for Solving Some Nonlinear Problems in Heat Transfer
Popis výsledku v původním jazyce
This paper presents an extension of the nonfield analytical method—known as the method of Kulish—to some nonlinear problems in heat transfer. In view of the fact that solving nonlinear problems is very complicated in general, the extension of the method is presented in the form of several important illustrative examples. Two classes of problems are considered: first are the problems, in which the heat equation contains nonlinear terms, while the second type of problems includes some problems with nonlinear boundary conditions. From the practical viewpoint, the case considering asymptotic solutions is of the greatest interest: it is shown that, for complex heat transfer problems, where applications of the nonfield method are practically impossible due to a large volume of necessary computations, it is still possible to analyze the solution behavior and automatically determine similarity criteria for the limiting values of the parameters. Wherever possible the obtained solutions are compared with known solutions obtained by other methods. The practical advantages of the nonfield method over other analytical methods are emphasized in each case.
Název v anglickém jazyce
A Nonfield Analytical Method for Solving Some Nonlinear Problems in Heat Transfer
Popis výsledku anglicky
This paper presents an extension of the nonfield analytical method—known as the method of Kulish—to some nonlinear problems in heat transfer. In view of the fact that solving nonlinear problems is very complicated in general, the extension of the method is presented in the form of several important illustrative examples. Two classes of problems are considered: first are the problems, in which the heat equation contains nonlinear terms, while the second type of problems includes some problems with nonlinear boundary conditions. From the practical viewpoint, the case considering asymptotic solutions is of the greatest interest: it is shown that, for complex heat transfer problems, where applications of the nonfield method are practically impossible due to a large volume of necessary computations, it is still possible to analyze the solution behavior and automatically determine similarity criteria for the limiting values of the parameters. Wherever possible the obtained solutions are compared with known solutions obtained by other methods. The practical advantages of the nonfield method over other analytical methods are emphasized in each case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Heat Transfer
ISSN
0022-1481
e-ISSN
1528-8943
Svazek periodika
144
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000861946000010
EID výsledku v databázi Scopus
2-s2.0-85144826726