A non-field analytical method for heat transfer problems through a moving boundary
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F21%3A00557267" target="_blank" >RIV/60162694:G43__/21:00557267 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/21:00352907
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-021-98572-x" target="_blank" >https://www.nature.com/articles/s41598-021-98572-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-021-98572-x" target="_blank" >10.1038/s41598-021-98572-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A non-field analytical method for heat transfer problems through a moving boundary
Popis výsledku v původním jazyce
This paper presents an extension of the non-field analytical method-known as the method of Kulish-to solving heat transfer problems in domains with a moving boundary. This is an important type of problems with various applications in different areas of science. Among these are heat transfer due to chemical reactions, ignition and explosions, combustion, and many others. The general form of the non-field solution has been obtained for the case of an arbitrarily moving boundary. After that some particular cases of the solution are considered. Among them are such cases as the boundary speed changing linearly, parabolically, exponentially, and polynomially. Whenever possible, the solutions thus obtained have been compared with known solutions. The final part of the paper is devoted to determination of the front propagation law in Stefan-type problems at large times. Asymptotic solutions have been found for several important cases of the front propagation.
Název v anglickém jazyce
A non-field analytical method for heat transfer problems through a moving boundary
Popis výsledku anglicky
This paper presents an extension of the non-field analytical method-known as the method of Kulish-to solving heat transfer problems in domains with a moving boundary. This is an important type of problems with various applications in different areas of science. Among these are heat transfer due to chemical reactions, ignition and explosions, combustion, and many others. The general form of the non-field solution has been obtained for the case of an arbitrarily moving boundary. After that some particular cases of the solution are considered. Among them are such cases as the boundary speed changing linearly, parabolically, exponentially, and polynomially. Whenever possible, the solutions thus obtained have been compared with known solutions. The final part of the paper is devoted to determination of the front propagation law in Stefan-type problems at large times. Asymptotic solutions have been found for several important cases of the front propagation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SCIENTIFIC REPORTS
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
18968
Kód UT WoS článku
000698791600038
EID výsledku v databázi Scopus
2-s2.0-85115612734