Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00374006" target="_blank" >RIV/68407700:21220/23:00374006 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.engappai.2023.105918" target="_blank" >https://doi.org/10.1016/j.engappai.2023.105918</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2023.105918" target="_blank" >10.1016/j.engappai.2023.105918</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Popis výsledku v původním jazyce
Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To enable two decision makers to make meaningful decisions for a problem with many objectives, we create the so-called MultiDM/IOPIS algorithm, which combines multiobjective evolutionary algorithms and scalarization functions from interactive multiobjective optimization methods in novel ways. We use the software framework called DESDEO, an open-source Python framework for interactively solving multiobjective optimization problems, to create the MultiDM/IOPIS algorithm. We provide a detailed account of all the challenges faced while formulating and solving the problem. We discuss and use many strategies to overcome those challenges. Overall, we propose a methodology to solve real-life data-driven problems with multiple objective functions and decision makers. With this methodology, we successfully obtained microalloyed steel compositions with mechanical properties that satisfied both decision makers.
Název v anglickém jazyce
Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Popis výsledku anglicky
Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To enable two decision makers to make meaningful decisions for a problem with many objectives, we create the so-called MultiDM/IOPIS algorithm, which combines multiobjective evolutionary algorithms and scalarization functions from interactive multiobjective optimization methods in novel ways. We use the software framework called DESDEO, an open-source Python framework for interactively solving multiobjective optimization problems, to create the MultiDM/IOPIS algorithm. We provide a detailed account of all the challenges faced while formulating and solving the problem. We discuss and use many strategies to overcome those challenges. Overall, we propose a methodology to solve real-life data-driven problems with multiple objective functions and decision makers. With this methodology, we successfully obtained microalloyed steel compositions with mechanical properties that satisfied both decision makers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
1873-6769
Svazek periodika
120
Číslo periodika v rámci svazku
105918
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000927780300001
EID výsledku v databázi Scopus
2-s2.0-85147195173