Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00374006" target="_blank" >RIV/68407700:21220/23:00374006 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.engappai.2023.105918" target="_blank" >https://doi.org/10.1016/j.engappai.2023.105918</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2023.105918" target="_blank" >10.1016/j.engappai.2023.105918</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework

  • Popis výsledku v původním jazyce

    Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To enable two decision makers to make meaningful decisions for a problem with many objectives, we create the so-called MultiDM/IOPIS algorithm, which combines multiobjective evolutionary algorithms and scalarization functions from interactive multiobjective optimization methods in novel ways. We use the software framework called DESDEO, an open-source Python framework for interactively solving multiobjective optimization problems, to create the MultiDM/IOPIS algorithm. We provide a detailed account of all the challenges faced while formulating and solving the problem. We discuss and use many strategies to overcome those challenges. Overall, we propose a methodology to solve real-life data-driven problems with multiple objective functions and decision makers. With this methodology, we successfully obtained microalloyed steel compositions with mechanical properties that satisfied both decision makers.

  • Název v anglickém jazyce

    Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework

  • Popis výsledku anglicky

    Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To enable two decision makers to make meaningful decisions for a problem with many objectives, we create the so-called MultiDM/IOPIS algorithm, which combines multiobjective evolutionary algorithms and scalarization functions from interactive multiobjective optimization methods in novel ways. We use the software framework called DESDEO, an open-source Python framework for interactively solving multiobjective optimization problems, to create the MultiDM/IOPIS algorithm. We provide a detailed account of all the challenges faced while formulating and solving the problem. We discuss and use many strategies to overcome those challenges. Overall, we propose a methodology to solve real-life data-driven problems with multiple objective functions and decision makers. With this methodology, we successfully obtained microalloyed steel compositions with mechanical properties that satisfied both decision makers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

    1873-6769

  • Svazek periodika

    120

  • Číslo periodika v rámci svazku

    105918

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    000927780300001

  • EID výsledku v databázi Scopus

    2-s2.0-85147195173