Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00374019" target="_blank" >RIV/68407700:21220/23:00374019 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s40314-022-02162-0" target="_blank" >https://doi.org/10.1007/s40314-022-02162-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40314-022-02162-0" target="_blank" >10.1007/s40314-022-02162-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
Popis výsledku v původním jazyce
Fast transients in pumps and valves may induce significant variations in pressures and flow rates throughout pipelines that can even cause structural damages. This computational work deals with parameter estimation of a water hammer model, with focus on a transient friction coefficient and an empirical parameter related to the pipeline elasticity. The hyperbolic water hammer model was solved with a total variation diminishing version of the weighted average flux finite volume scheme. Simulated pressure and flow rate measurements taken near the inlet and the outlet of the pipeline were used for the solution of the parameter estimation problem with Markov Chain Monte Carlo methods. This work aimed at the reduction of the computational time of the inverse problem solution with two different strategies: (1) the application of a recent parallel computation version of the Metropolis-Hastings algorithm; and (2) the use of a machine learning metamodel obtained with the evolutionary neural network algorithm and the approximation error model approach. These two approaches are compared in terms of the parameter estimation accuracies and associated computational times.
Název v anglickém jazyce
Parameter estimation with the Markov Chain Monte Carlo method aided by evolutionary neural networks in a water hammer model
Popis výsledku anglicky
Fast transients in pumps and valves may induce significant variations in pressures and flow rates throughout pipelines that can even cause structural damages. This computational work deals with parameter estimation of a water hammer model, with focus on a transient friction coefficient and an empirical parameter related to the pipeline elasticity. The hyperbolic water hammer model was solved with a total variation diminishing version of the weighted average flux finite volume scheme. Simulated pressure and flow rate measurements taken near the inlet and the outlet of the pipeline were used for the solution of the parameter estimation problem with Markov Chain Monte Carlo methods. This work aimed at the reduction of the computational time of the inverse problem solution with two different strategies: (1) the application of a recent parallel computation version of the Metropolis-Hastings algorithm; and (2) the use of a machine learning metamodel obtained with the evolutionary neural network algorithm and the approximation error model approach. These two approaches are compared in terms of the parameter estimation accuracies and associated computational times.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTATIONAL & APPLIED MATHEMATICS
ISSN
2238-3603
e-ISSN
1807-0302
Svazek periodika
42
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
31
Strana od-do
—
Kód UT WoS článku
000910045700001
EID výsledku v databázi Scopus
2-s2.0-85145777715