A probabilistic stress-life model supported by weakest link principle and highly-stressed volume/surface area concepts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00369192" target="_blank" >RIV/68407700:21220/24:00369192 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijfatigue.2023.108006" target="_blank" >https://doi.org/10.1016/j.ijfatigue.2023.108006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijfatigue.2023.108006" target="_blank" >10.1016/j.ijfatigue.2023.108006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A probabilistic stress-life model supported by weakest link principle and highly-stressed volume/surface area concepts
Popis výsledku v původním jazyce
This article introduces a probabilistic fatigue model that combines the principles of the weakest link theory with the highly-stressed volume (HSV) or highly-stressed surface area (HSSA) concepts to estimate stress-life (P-S-N) curves for both unnotched (smooth) and notched large-scale specimens, for any prescribed failure probability. By incorporating probabilistic models, P-S-N curves corresponding to lower probabilities of failure can be obtained. The integration of HSV or HSSA with the weakest link principle enhances the estimation of fatigue strength for real elements or components, which often require testing with reduced-size specimens. The proposed model is verified by experimental fatigue data from the literature, specifically involving unnotched and notched cylindrical specimens subjected to different constant amplitude loadings. The results demonstrate the robustness and effectiveness of the model in estimating characteristic P-S-N curves at lower probabilities of failure.
Název v anglickém jazyce
A probabilistic stress-life model supported by weakest link principle and highly-stressed volume/surface area concepts
Popis výsledku anglicky
This article introduces a probabilistic fatigue model that combines the principles of the weakest link theory with the highly-stressed volume (HSV) or highly-stressed surface area (HSSA) concepts to estimate stress-life (P-S-N) curves for both unnotched (smooth) and notched large-scale specimens, for any prescribed failure probability. By incorporating probabilistic models, P-S-N curves corresponding to lower probabilities of failure can be obtained. The integration of HSV or HSSA with the weakest link principle enhances the estimation of fatigue strength for real elements or components, which often require testing with reduced-size specimens. The proposed model is verified by experimental fatigue data from the literature, specifically involving unnotched and notched cylindrical specimens subjected to different constant amplitude loadings. The results demonstrate the robustness and effectiveness of the model in estimating characteristic P-S-N curves at lower probabilities of failure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Fatigue
ISSN
0142-1123
e-ISSN
1879-3452
Svazek periodika
178
Číslo periodika v rámci svazku
108006
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001102353200001
EID výsledku v databázi Scopus
2-s2.0-85174889674