Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AFM cell indentation: fluid shell model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00369525" target="_blank" >RIV/68407700:21220/24:00369525 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21460/24:00369525

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-031-62523-7_14" target="_blank" >http://dx.doi.org/10.1007/978-3-031-62523-7_14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-62523-7_14" target="_blank" >10.1007/978-3-031-62523-7_14</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AFM cell indentation: fluid shell model

  • Popis výsledku v původním jazyce

    Cellular mechanical properties provide insights into the state and health of cells. However, accurately measuring these properties is challenging due to the small size and low stiffness of cells. In recent years, Atomic Force Microscopy (AFM) has emerged as a promising tool for assessing the mechanical characteristics of individual cells. The evaluation of AFM measurements is complicated by the nonlinear contact between the AFM tip and the cell, which induces deformations throughout the entire cell. This leads to a nonlinear cell stiffness that varies with the depth of indentation. To bridge the gap between measured indentation data and the inherent material properties of the cell, irrespective of the experimental setup, we have introduced a theoretical model for cell deformation during indentation. Our model is built upon the Laplace equation adopted for fluid membranes. It predicts the areas of contact and the corresponding indentation forces as functions of indentation depth, aligning closely with experimental observations. Furthermore, our model takes into consideration both the size of the AFM tip and the dimensions of the cell while characterizing cell material properties through an area expansion modulus. Notably, this material parameter, derived by fitting the AFM deflection curve of DPPC liposomes, falls within the range documented in existing literature. This model holds the potential for further enhancement by factoring in adhesion energy and exploring the effects of different AFM tip shapes. Such refinements could advance our understanding of cell mechanics by accurately measuring cell membrane intrinsic material properties.

  • Název v anglickém jazyce

    AFM cell indentation: fluid shell model

  • Popis výsledku anglicky

    Cellular mechanical properties provide insights into the state and health of cells. However, accurately measuring these properties is challenging due to the small size and low stiffness of cells. In recent years, Atomic Force Microscopy (AFM) has emerged as a promising tool for assessing the mechanical characteristics of individual cells. The evaluation of AFM measurements is complicated by the nonlinear contact between the AFM tip and the cell, which induces deformations throughout the entire cell. This leads to a nonlinear cell stiffness that varies with the depth of indentation. To bridge the gap between measured indentation data and the inherent material properties of the cell, irrespective of the experimental setup, we have introduced a theoretical model for cell deformation during indentation. Our model is built upon the Laplace equation adopted for fluid membranes. It predicts the areas of contact and the corresponding indentation forces as functions of indentation depth, aligning closely with experimental observations. Furthermore, our model takes into consideration both the size of the AFM tip and the dimensions of the cell while characterizing cell material properties through an area expansion modulus. Notably, this material parameter, derived by fitting the AFM deflection curve of DPPC liposomes, falls within the range documented in existing literature. This model holds the potential for further enhancement by factoring in adhesion energy and exploring the effects of different AFM tip shapes. Such refinements could advance our understanding of cell mechanics by accurately measuring cell membrane intrinsic material properties.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Digital Health and Medical Bioengineering. Proceedings of the 11th International Conference on E-Health and Bioengineering, EHB-2023, November 9–10, 2023, Bucharest, Romania – Volume 3: Telemedicine, Biomaterials, Environmental Protection, Medical Imaging, and Biomechanics

  • ISBN

    978-3-031-62523-7

  • ISSN

    1680-0737

  • e-ISSN

    1433-9277

  • Počet stran výsledku

    9

  • Strana od-do

    125-133

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Basel

  • Místo konání akce

    Bucuresti

  • Datum konání akce

    9. 11. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001434998400014