AFM cell indentation: fluid shell model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00369525" target="_blank" >RIV/68407700:21220/24:00369525 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/24:00369525
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-62523-7_14" target="_blank" >http://dx.doi.org/10.1007/978-3-031-62523-7_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-62523-7_14" target="_blank" >10.1007/978-3-031-62523-7_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AFM cell indentation: fluid shell model
Popis výsledku v původním jazyce
Cellular mechanical properties provide insights into the state and health of cells. However, accurately measuring these properties is challenging due to the small size and low stiffness of cells. In recent years, Atomic Force Microscopy (AFM) has emerged as a promising tool for assessing the mechanical characteristics of individual cells. The evaluation of AFM measurements is complicated by the nonlinear contact between the AFM tip and the cell, which induces deformations throughout the entire cell. This leads to a nonlinear cell stiffness that varies with the depth of indentation. To bridge the gap between measured indentation data and the inherent material properties of the cell, irrespective of the experimental setup, we have introduced a theoretical model for cell deformation during indentation. Our model is built upon the Laplace equation adopted for fluid membranes. It predicts the areas of contact and the corresponding indentation forces as functions of indentation depth, aligning closely with experimental observations. Furthermore, our model takes into consideration both the size of the AFM tip and the dimensions of the cell while characterizing cell material properties through an area expansion modulus. Notably, this material parameter, derived by fitting the AFM deflection curve of DPPC liposomes, falls within the range documented in existing literature. This model holds the potential for further enhancement by factoring in adhesion energy and exploring the effects of different AFM tip shapes. Such refinements could advance our understanding of cell mechanics by accurately measuring cell membrane intrinsic material properties.
Název v anglickém jazyce
AFM cell indentation: fluid shell model
Popis výsledku anglicky
Cellular mechanical properties provide insights into the state and health of cells. However, accurately measuring these properties is challenging due to the small size and low stiffness of cells. In recent years, Atomic Force Microscopy (AFM) has emerged as a promising tool for assessing the mechanical characteristics of individual cells. The evaluation of AFM measurements is complicated by the nonlinear contact between the AFM tip and the cell, which induces deformations throughout the entire cell. This leads to a nonlinear cell stiffness that varies with the depth of indentation. To bridge the gap between measured indentation data and the inherent material properties of the cell, irrespective of the experimental setup, we have introduced a theoretical model for cell deformation during indentation. Our model is built upon the Laplace equation adopted for fluid membranes. It predicts the areas of contact and the corresponding indentation forces as functions of indentation depth, aligning closely with experimental observations. Furthermore, our model takes into consideration both the size of the AFM tip and the dimensions of the cell while characterizing cell material properties through an area expansion modulus. Notably, this material parameter, derived by fitting the AFM deflection curve of DPPC liposomes, falls within the range documented in existing literature. This model holds the potential for further enhancement by factoring in adhesion energy and exploring the effects of different AFM tip shapes. Such refinements could advance our understanding of cell mechanics by accurately measuring cell membrane intrinsic material properties.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Digital Health and Medical Bioengineering. Proceedings of the 11th International Conference on E-Health and Bioengineering, EHB-2023, November 9–10, 2023, Bucharest, Romania – Volume 3: Telemedicine, Biomaterials, Environmental Protection, Medical Imaging, and Biomechanics
ISBN
978-3-031-62523-7
ISSN
1680-0737
e-ISSN
1433-9277
Počet stran výsledku
9
Strana od-do
125-133
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
Bucuresti
Datum konání akce
9. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001434998400014