Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00373003" target="_blank" >RIV/68407700:21220/24:00373003 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.triboint.2024.109506" target="_blank" >https://doi.org/10.1016/j.triboint.2024.109506</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.triboint.2024.109506" target="_blank" >10.1016/j.triboint.2024.109506</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability

  • Popis výsledku v původním jazyce

    The primary aim of the present study is to assess the stability and efficacy of hybrid nanocellulose (CNC) and copper (II) oxide (CuO) nanoparticles when integrated into engine oil as a lubricant for piston ring-cylinder liner applications. The assessment of system stability was conducted by employing zeta potential measurements. Furthermore, the coefficient of friction and specific wear rate were determined by using hydrodynamic lubrication in circumstances characterised by high speed and low load, as well as boundary lubrication in situations characterised by low speed and high load. The trials used a specially constructed friction and wear testing device miming the contact geometry between piston rings and cylinder liners in an internal combustion engine. Alongside SAE 40 oil, several nanoparticle concentrations (0.1%, 0.3%, 0.5%, 0.7%, and 0.9% added to SAE 40) were examined. The stability of the nanolubricant increased from 0.1% to 0.5% concentration and then declined at 0.9% concentration, according to the zeta potential data. The graph showed that the 0.5% concentration of the nanolubricant had the highest mean zeta potential, indicating exceptional stability. The CNC-CuO nanolubricants showed notable reductions in the friction coefficient regarding tribological performance. The friction coefficient reduced between 33% and 44% in mixed lubrication and 48% and 50% in boundary lubrication. There was a 9–13% decrease in the friction coefficient when hydrodynamic lubrication was used. The CNC-CuO nanolubricant only showed light scuffing, while the SAE 40 sample showed severe exfoliation and scuffing. Wear rates had been enhanced by 33.5%. Overall, the 0.5% concentration of CNC-CuO nanoparticles improved the engine oil's thermophysical properties and performance.

  • Název v anglickém jazyce

    Enhancing stability and tribological applications using hybrid nanocellulose-copper (II) oxide (CNC-CuO) nanolubricant: An approach towards environmental sustainability

  • Popis výsledku anglicky

    The primary aim of the present study is to assess the stability and efficacy of hybrid nanocellulose (CNC) and copper (II) oxide (CuO) nanoparticles when integrated into engine oil as a lubricant for piston ring-cylinder liner applications. The assessment of system stability was conducted by employing zeta potential measurements. Furthermore, the coefficient of friction and specific wear rate were determined by using hydrodynamic lubrication in circumstances characterised by high speed and low load, as well as boundary lubrication in situations characterised by low speed and high load. The trials used a specially constructed friction and wear testing device miming the contact geometry between piston rings and cylinder liners in an internal combustion engine. Alongside SAE 40 oil, several nanoparticle concentrations (0.1%, 0.3%, 0.5%, 0.7%, and 0.9% added to SAE 40) were examined. The stability of the nanolubricant increased from 0.1% to 0.5% concentration and then declined at 0.9% concentration, according to the zeta potential data. The graph showed that the 0.5% concentration of the nanolubricant had the highest mean zeta potential, indicating exceptional stability. The CNC-CuO nanolubricants showed notable reductions in the friction coefficient regarding tribological performance. The friction coefficient reduced between 33% and 44% in mixed lubrication and 48% and 50% in boundary lubrication. There was a 9–13% decrease in the friction coefficient when hydrodynamic lubrication was used. The CNC-CuO nanolubricant only showed light scuffing, while the SAE 40 sample showed severe exfoliation and scuffing. Wear rates had been enhanced by 33.5%. Overall, the 0.5% concentration of CNC-CuO nanoparticles improved the engine oil's thermophysical properties and performance.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Tribology International

  • ISSN

    0301-679X

  • e-ISSN

    1879-2464

  • Svazek periodika

    2024 (194)

  • Číslo periodika v rámci svazku

    06

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001206834700001

  • EID výsledku v databázi Scopus

    2-s2.0-85186337168