Prediction of non-stationary deformation of gas turbine using machine learning approach coupling between CFD and FEM model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00375067" target="_blank" >RIV/68407700:21220/24:00375067 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21495/em2024-226" target="_blank" >https://doi.org/10.21495/em2024-226</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21495/em2024-226" target="_blank" >10.21495/em2024-226</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of non-stationary deformation of gas turbine using machine learning approach coupling between CFD and FEM model
Popis výsledku v původním jazyce
After shutdown, the gas turbine rotor system cooling primarily through natural convection and radiation. It is presenting a common engineering challenge prevalent across various applications. In power engineering, this phenomenon has long been acknowledged and addressed through gradual startup and shutdown procedures of the rotor system. However, within the aircraft engine domain, this issue is more necessary due to the variable operating conditions and temperatures changes by flight modes or engine shutdown events. Moreover, engine aftercooling proves particularly arduous owing to the intricate geometry and equipment constraints. This paper delves into the application of a developed Finite Element Method (FEM) tool for predicting rotor thermal bow induced by temperature discrepancies between the upper and lower sides of the rotor. The paper meticulously elucidates the mathematical model of the FEM tool and expounds upon the calculation methodology for rotor deflection based on the selected geometry.
Název v anglickém jazyce
Prediction of non-stationary deformation of gas turbine using machine learning approach coupling between CFD and FEM model
Popis výsledku anglicky
After shutdown, the gas turbine rotor system cooling primarily through natural convection and radiation. It is presenting a common engineering challenge prevalent across various applications. In power engineering, this phenomenon has long been acknowledged and addressed through gradual startup and shutdown procedures of the rotor system. However, within the aircraft engine domain, this issue is more necessary due to the variable operating conditions and temperatures changes by flight modes or engine shutdown events. Moreover, engine aftercooling proves particularly arduous owing to the intricate geometry and equipment constraints. This paper delves into the application of a developed Finite Element Method (FEM) tool for predicting rotor thermal bow induced by temperature discrepancies between the upper and lower sides of the rotor. The paper meticulously elucidates the mathematical model of the FEM tool and expounds upon the calculation methodology for rotor deflection based on the selected geometry.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000826" target="_blank" >EF16_019/0000826: Centrum pokročilých leteckých technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Mechanics 2024: Book of full texts
ISBN
978-80-214-6235-9
ISSN
1805-8248
e-ISSN
—
Počet stran výsledku
4
Strana od-do
226-229
Název nakladatele
Institute of Thermomechanics, AS CR, v.v.i.
Místo vydání
Prague
Místo konání akce
Milovy
Datum konání akce
14. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—