Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bed-to-surface heat transfer in a BFB oxy-fuel combustor

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00377808" target="_blank" >RIV/68407700:21220/24:00377808 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.fuel.2024.131093" target="_blank" >https://doi.org/10.1016/j.fuel.2024.131093</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fuel.2024.131093" target="_blank" >10.1016/j.fuel.2024.131093</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bed-to-surface heat transfer in a BFB oxy-fuel combustor

  • Popis výsledku v původním jazyce

    This work presents an experimental determination of heat transfer coefficient between the dense zone of a bubbling fluidized bed combustor and an immersed heat exchanging surface in oxy-fuel combustion mode, air mode being used for a comparison. The experimental work was carried out using a 30 kW scale autothermal bubbling fluidized bed combustor with real wet flue gas recirculation. A lightweight ceramic aggregate was used as the bed material and wood pellet as the fuel, the testing range of the bed temperature and fluidization velocity was within a typical range of fluidized bed combustors. For heat transfer measurement purposes, a single -loop water-cooled heat exchanger was developed. Convection and radiation were evaluated for both combustion modes. The convection in air mode reaches about 120 to 180 W/m2/K, while in the oxy-fuel mode it reaches about 180 to 230 W/m2/K. Radiation is not particularly affected by the combustion mode, reaching 80 to 120 W/ m2/K for both modes. The correlation equations to determine convection were examined and compared with the experimental data. The general shortcoming of most of the available equations is a disagreement in trend between the predicted and experimentally measured convection correlated with the fluidization velocity. The Packet model, which was identified to predict this trend correctly, was fitted with the experimental data to determine new constants. The modified model is capable of predicting convection with a 2 and a 9 % deviation for air and oxyfuel combustion modes, respectively.

  • Název v anglickém jazyce

    Bed-to-surface heat transfer in a BFB oxy-fuel combustor

  • Popis výsledku anglicky

    This work presents an experimental determination of heat transfer coefficient between the dense zone of a bubbling fluidized bed combustor and an immersed heat exchanging surface in oxy-fuel combustion mode, air mode being used for a comparison. The experimental work was carried out using a 30 kW scale autothermal bubbling fluidized bed combustor with real wet flue gas recirculation. A lightweight ceramic aggregate was used as the bed material and wood pellet as the fuel, the testing range of the bed temperature and fluidization velocity was within a typical range of fluidized bed combustors. For heat transfer measurement purposes, a single -loop water-cooled heat exchanger was developed. Convection and radiation were evaluated for both combustion modes. The convection in air mode reaches about 120 to 180 W/m2/K, while in the oxy-fuel mode it reaches about 180 to 230 W/m2/K. Radiation is not particularly affected by the combustion mode, reaching 80 to 120 W/ m2/K for both modes. The correlation equations to determine convection were examined and compared with the experimental data. The general shortcoming of most of the available equations is a disagreement in trend between the predicted and experimentally measured convection correlated with the fluidization velocity. The Packet model, which was identified to predict this trend correctly, was fitted with the experimental data to determine new constants. The modified model is capable of predicting convection with a 2 and a 9 % deviation for air and oxyfuel combustion modes, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuel

  • ISSN

    0016-2361

  • e-ISSN

    1873-7153

  • Svazek periodika

    364

  • Číslo periodika v rámci svazku

    131093

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    001177513800001

  • EID výsledku v databázi Scopus

    2-s2.0-85184059904