Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rubust subspace mixture models using $t$-distributions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F03%3A03091305" target="_blank" >RIV/68407700:21230/03:03091305 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rubust subspace mixture models using $t$-distributions

  • Popis výsledku v původním jazyce

    Probabilistic subspace mixture models, as proposed over the last few years, are interesting methods for learning image manifolds, i.e. nonlinear subspaces of spaces in which images are represented as vectors by their grey-values. However, for many practical applications, where outliers are common, these methods still lack robustness. Here, the idea of robust mixture modelling by t-distributions is combined with probabilistic subspace mixture models. The resulting robust subspace mixture model is shown experimentally to give advantages in density estimation and classification of image data sets

  • Název v anglickém jazyce

    Rubust subspace mixture models using $t$-distributions

  • Popis výsledku anglicky

    Probabilistic subspace mixture models, as proposed over the last few years, are interesting methods for learning image manifolds, i.e. nonlinear subspaces of spaces in which images are represented as vectors by their grey-values. However, for many practical applications, where outliers are common, these methods still lack robustness. Here, the idea of robust mixture modelling by t-distributions is combined with probabilistic subspace mixture models. The resulting robust subspace mixture model is shown experimentally to give advantages in density estimation and classification of image data sets

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2003

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    BMVC 2003: Proceedings of the 14th British Machine Vision Conference

  • ISBN

    1-901725-23-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    319-328

  • Název nakladatele

    British Machine Vision Association

  • Místo vydání

    London

  • Místo konání akce

    Norwich

  • Datum konání akce

    9. 9. 2003

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku